Jung-Hui Chen
National Kaohsiung Normal University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jung-Hui Chen.
IEEE Electron Device Letters | 2013
Kuan-Chang Chang; Tsung-Ming Tsai; Ting-Chang Chang; Hsing-Hua Wu; Jung-Hui Chen; Yong-En Syu; Geng-Wei Chang; Tian-Jian Chu; Guan-Ru Liu; Yu-Ting Su; Min-Chen Chen; Jhih-Hong Pan; Jian-Yu Chen; Cheng-Wei Tung; Hui-Chun Huang; Ya-Hsiang Tai; Dershin Gan; Simon M. Sze
Traditionally, a large number of silicon oxide materials are extensively used as various dielectrics for semiconductor industries. In general, silicon oxide cannot be used as resistance random access memory (RRAM) due to its insulating electrical properties. In this letter, we have successfully produced resistive switching and forming-free behaviors by zinc doped into silicon oxide. The current-voltage fitting data show that current transport mechanism is governed by Poole-Frenkel behavior in high-resistance state and Ohms law in low-resistance state, consisting with filament theory. Additionally, good endurance and retention reliabilities are exhibited in the zinc-doped silicon oxide RRAM.
IEEE Electron Device Letters | 2013
Tian-Jian Chu; Ting-Chang Chang; Tsung-Ming Tsai; Hsing-Hua Wu; Jung-Hui Chen; Kuan-Chang Chang; Tai-Fa Young; Kai-Hsang Chen; Yong-En Syu; Geng-Wei Chang; Yao-Feng Chang; Min-Chen Chen; J. C. Lou; Jhih-Hong Pan; Jian-Yu Chen; Ya-Hsiang Tai; Cong Ye; Hao Wang; Simon M. Sze
In this letter, we presented that the charge quantity is the critical factor for forming process. Forming is a pivotal process in resistance random access memory to activate the resistance switching behavior. However, overforming would lead to device damage. In general, the overshoot current has been considered as a degradation reason during the forming process. In this letter, the quantity of charge through the switching layer has been proven as the key element in the formation of the conduction path. Ultrafast pulse forming can form a discontinuous conduction path to reduce the operation power.
Applied Physics Letters | 2013
Yu-Ting Su; Kuan-Chang Chang; Ting-Chang Chang; Tsung-Ming Tsai; Rui Zhang; J. C. Lou; Jung-Hui Chen; Tai-Fa Young; Kai-Huang Chen; Bae-Heng Tseng; Chih-Cheng Shih; Ya-Liang Yang; Min-Chen Chen; Tian-Jian Chu; Chih-Hung Pan; Yong-En Syu; Simon M. Sze
In this Letter, the characteristics of set process of hafnium oxide based resistance random access memory are investigated by different set processes with increasing compliance current. Through current fitting, carrier conduction mechanism of low resistance state changes from hopping to surface scattering and finally to ohmic conduction with the increase of setting compliance current. Experimental data of current-voltage measurement under successive increasing temperature confirms the conduction mechanism transition. A model of filament growth is eventually proposed in a way by merging discrete metal precipitates and electrical field simulation by comsol Multiphysics further clarifies the properties of filament growth process.
Applied Physics Letters | 2013
Tsung-Ming Tsai; Kuan-Chang Chang; Rui Zhang; Ting-Chang Chang; J. C. Lou; Jung-Hui Chen; Tai-Fa Young; Bae-Heng Tseng; Chih-Cheng Shih; Yin-Chih Pan; Min-Chen Chen; Jhih-Hong Pan; Yong-En Syu; Simon M. Sze
A bilayer resistive switching memory device with an inserted porous silicon oxide layer is investigated in this letter. Compared with single Zr:SiOx layer structure, Zr:SiOx/porous SiOx structure outperforms from various aspects, including low operating voltages, tighter distributions of set voltage, higher stability of both low resistance state and high resistance state, and satisfactory endurance characteristics. Electric field simulation by comsolTM Multiphysics is applied, which corroborates that intensive electric field around the pore in porous SiOx layer guides the conduction of electrons. The constraint of conduction path leads to better stabilization and prominent performance of bilayer resistive switching devices.
IEEE Electron Device Letters | 2014
Rui Zhang; Kuan-Chang Chang; Ting-Chang Chang; Tsung-Ming Tsai; Syuan-Yong Huang; Wen-Jen Chen; Kai-Huang Chen; Jen-Chung Lou; Jung-Hui Chen; Tai-Fa Young; Min-Chen Chen; Hsin-Lu Chen; Shu-Ping Liang; Yong-En Syu; Simon M. Sze
In this letter, we report the oxygen accumulation effect and its influence on resistive switching for gadolinium-doped silicon dioxide (Gd:SiO2) resistance random access memory (RRAM). We find that oxygen absorbance by indium-tin-oxide electrode affects the conduction current mechanism, and remarkably modifies the device performance of RRAM devices. By current fitting, Schottky emission can be observed in both low and high resistance states, from which conduction model is proposed to clarify the oxygen accumulation phenomenon. Reliability tests, including endurance and high temperature retention are further carried out, evaluating the significance of oxygen accumulation effect in redox reaction for RRAM devices.
IEEE Electron Device Letters | 2013
Kuan-Chang Chang; Chih-Hung Pan; Ting-Chang Chang; Tsung-Ming Tsai; Rui Zhang; Jen-Chung Lou; Tai-Fa Young; Jung-Hui Chen; Chih-Cheng Shih; Tian-Jian Chu; Jian-Yu Chen; Yu-Ting Su; Jhao-Ping Jiang; Kai-Huang Chen; Hui-Chun Huang; Yong-En Syu; Dershin Gan; Simon M. Sze
In this letter, we introduced hydrogen ions into titanium metal doped into SiO2 thin film as the insulator of resistive random access memory (RRAM) by supercritical carbon dioxide (SCCO)2 fluid treatment. After treatment, low resistance state split in to two states, we find the insert RRAM, which means it has an operating polarity opposite from normal RRAM. The difference of the insert RRAM is owing to the resistive switching dominated by hydrogen ions, dissociated from OH bond, which was not by oxygen ions as usual. The current conduction mechanism of insert RRAM was hopping conduction due to the metal titanium reduction reaction through SCCO2.
Applied Physics Letters | 2013
Kuan-Chang Chang; Tsung-Ming Tsai; Rui Zhang; Ting-Chang Chang; Kai-Huang Chen; Jung-Hui Chen; Tai-Fa Young; J. C. Lou; Tian-Jian Chu; Chih-Cheng Shih; Jhih-Hong Pan; Yu-Ting Su; Yong-En Syu; Cheng-Wei Tung; Min-Chen Chen; Jia-Jie Wu; Ying Hu; Simon M. Sze
In this study, the electrical conduction mechanism of Zn:SiOx resistance random access memory (RRAM) treated with supercritical CO2 fluid (SCCO2) process was investigated by low temperature measurement. The current of low resistance state for current-voltage curves in SCCO2-treated and untreated Zn:SiOx RRAM were measured and compared under a low temperature range from 100 K to 298 K. The electrical conduction mechanisms of hopping conduction and metal-like behaviors in SCCO2-treated and untreated Zn:SiOx RRAM were discussed, respectively. Finally, the electrical conduction mechanism was analyzed and verified by the chemical composition and bonding intensity of XPS analyses.
IEEE Electron Device Letters | 2013
Kuan-Chang Chang; Tsung-Ming Tsai; Ting-Chang Chang; Hsing-Hua Wu; Kai-Huang Chen; Jung-Hui Chen; Tai-Fa Young; Tian-Jian Chu; Jian-Yu Chen; Chih-Hung Pan; Yu-Ting Su; Yong-En Syu; Cheng-Wei Tung; Geng-Wei Chang; Min-Chen Chen; Hui-Chun Huang; Ya-Hsiang Tai; Dershin Gan; Jia-Jie Wu; Ying Hu; Simon M. Sze
To improve the resistive switching properties of the resistive random access memory (RRAM), the supercritical carbon dioxide (SCCO<sub>2</sub>) fluid is used as a low temperature treatment. In this letter, the Zn:SiO<i>x</i> thin films are treated by SCCO<sub>2</sub> fluid mixed with pure water. After SCCO<sub>2</sub> fluid treatment, the resistive switching qualities of the Zn:SiO<sub>x</sub> thin films are carried out by XPS, fourier transform infrared spectroscopy, and IV measurement. We believe that the SCCO<sub>2</sub>-treated Zn:SiO<sub>x</sub> thin film is a proresistive switching properties mising material for RRAM applications due to its compatibility with portable flat panel display.
IEEE Electron Device Letters | 2013
Yong-En Syu; Rui Zhang; Ting-Chang Chang; Tsung-Ming Tsai; Kuan-Chang Chang; Jen-Chung Lou; Tai-Fa Young; Jung-Hui Chen; Min-Chen Chen; Ya-Liang Yang; Chih-Cheng Shih; Tian-Jian Chu; Jian-Yu Chen; Chih-Hung Pan; Yu-Ting Su; Hui-Chun Huang; Dershin Gan; Simon M. Sze
Incorporation of nitrogen as an oxygen-confining layer in the resistance switching reaction region is investigated to improve the reliability of resistance random access memory (RRAM). The switching mechanism can be attributed to the formation and rupture of conduction filaments. A compatible WSiON (around 5 nm) layer is introduced at the interface of tungsten silicon oxide (WSiOx) and TiN electrode to prevent the randomly diffusing oxygen ions surpassing the storage region of the WSiON layer. The double-layer WSiOx/WSiON memory structure would enhance the endurance over 100 times so as to better confirm the WSiOx RRAM application of nonvolatile memory.
Applied Physics Letters | 2015
Yi-Ting Tseng; Tsung-Ming Tsai; Ting-Chang Chang; Chih-Cheng Shih; Kuan-Chang Chang; Rui Zhang; Kai-Huang Chen; Jung-Hui Chen; Yu-Chiuan Li; Chih-Yang Lin; Ya-Chi Hung; Yong-En Syu; Jin-Cheng Zheng; Simon M. Sze
In this study of resistance random access memory in a resistive switching film, the breakdown degree was controlled by varying forming current compliance. A SiOx layer was introduced into the ZnO layer of the structure to induce both typical bipolar resistive switching (RS) and complementary resistive switching (CRS). In addition, the SiOx layer-generated vacuum spaces in typical bipolar RS can be verified by electrical characteristics. Changing forming current compliance strikingly modifies the oxygen storage capacity of the inserted SiOx layer. CRS can be achieved, therefore, by tuning the oxygen ion storage behavior made possible by the SiOx layer.