Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jung Kul Lee is active.

Publication


Featured researches published by Jung Kul Lee.


Journal of Biological Chemistry | 2012

Role of Conserved Glycine in Zinc-dependent Medium Chain Dehydrogenase/Reductase Superfamily

Manish Kumar Tiwari; Raushan Kumar Singh; Ranjitha Singh; Marimuthu Jeya; Huimin Zhao; Jung Kul Lee

Background: The function of second-shell residues is not well understood in zinc-dependent medium chain dehydrogenase/reductases (MDRs). Results: The strictly conserved second-shell residue Gly-77 was characterized using a wide variety of methods. Conclusion: Gly-77 maintains the metal binding affinity and electronic state of the catalytic zinc ion. Significance: This study provides the first insights into the role of a conserved glycine in the MDR superfamily. The medium-chain dehydrogenase/reductase (MDR) superfamily consists of a large group of enzymes with a broad range of activities. Members of this superfamily are currently the subject of intensive investigation, but many aspects, including the zinc dependence of MDR superfamily proteins, have not yet have been adequately investigated. Using a density functional theory-based screening strategy, we have identified a strictly conserved glycine residue (Gly) in the zinc-dependent MDR superfamily. To elucidate the role of this conserved Gly in MDR, we carried out a comprehensive structural, functional, and computational analysis of four MDR enzymes through a series of studies including site-directed mutagenesis, isothermal titration calorimetry, electron paramagnetic resonance (EPR), quantum mechanics, and molecular mechanics analysis. Gly substitution by other amino acids posed a significant threat to the metal binding affinity and activity of MDR superfamily enzymes. Mutagenesis at the conserved Gly resulted in alterations in the coordination of the catalytic zinc ion, with concomitant changes in metal-ligand bond length, bond angle, and the affinity (Kd) toward the zinc ion. The Gly mutants also showed different spectroscopic properties in EPR compared with those of the wild type, indicating that the binding geometries of the zinc to the zinc binding ligands were changed by the mutation. The present results demonstrate that the conserved Gly in the GHE motif plays a role in maintaining the metal binding affinity and the electronic state of the catalytic zinc ion during catalysis of the MDR superfamily enzymes.


Bioorganic & Medicinal Chemistry Letters | 2011

Cloning and characterization of a type III polyketide synthase from Aspergillus niger

Jinglin Li; Yunzi Luo; Jung Kul Lee; Huimin Zhao

Type III polyketide synthases (PKSs) are the condensing enzymes that catalyze the formation of a myriad of aromatic polyketides in plant, bacteria, and fungi. Here we report the cloning and characterization of a putative type III PKS from Aspergillusniger, AnPKS. This enzyme catalyzes the synthesis of alkyl pyrones from C2 to C18 starter CoA thioesters with malonyl-CoA as an extender CoA through decaboxylative condensation and cyclization. It displays broad substrate specificity toward fatty acyl-CoA starters to yield triketide and tetraketide pyrones, with benzoyl-CoA as the most preferred starter. The optimal temperature and pH of AnPKS are 50°C and 8, respectively. Under optimal conditions, the enzyme shows the highest catalytic efficiency (k(cat)/K(m)) of 7.4×10(5)s(-1)M(-1) toward benzoyl-CoA. Homology modeling and site-directed mutagenesis were used to probe the molecular basis of its substrate specificity. This study should open doors for further engineering of AnPKS as a biocatalyst for synthesis of value-added polyketides.


Journal of Bacteriology | 2007

Identification and Characterization of the Flavin:NADH Reductase (PrnF) Involved in a Novel Two-Component Arylamine Oxygenase

Jung Kul Lee; Huimin Zhao

Two-component oxygenases catalyze a wide variety of important oxidation reactions. Recently we characterized a novel arylamine N-oxygenase (PrnD), a new member of the two-component oxygenase family (J. Lee et al., J. Biol. Chem. 280:36719-36728, 2005). Although arylamine N-oxygenases are widespread in nature, aminopyrrolnitrin N-oxygenase (PrnD) represents the only biochemically and mechanistically characterized arylamine N-oxygenase to date. Here we report the use of bioinformatic and biochemical tools to identify and characterize the reductase component (PrnF) involved in the PrnD-catalyzed unusual arylamine oxidation. The prnF gene was identified via sequence analysis of the whole genome of Pseudomonas fluorescens Pf-5 and subsequently cloned and overexpressed in Escherichia coli. The purified PrnF protein catalyzes reduction of flavin adenine dinucleotide (FAD) by NADH with a k(cat) of 65 s(-1) (K(m) = 3.2 muM for FAD and 43.1 muM for NADH) and supplies reduced FAD to the PrnD oxygenase component. Unlike other known reductases in two-component oxygenase systems, PrnF strictly requires NADH as an electron donor to reduce FAD and requires unusual protein-protein interaction with the PrnD component for the efficient transfer of reduced FAD. This PrnF enzyme represents the first cloned and characterized flavin reductase component in a novel two-component arylamine oxygenase system.


Journal of Bacteriology | 2006

Probing the Substrate Specificity of Aminopyrrolnitrin Oxygenase (PrnD) by Mutational Analysis

Jung Kul Lee; Ee Lui Ang; Huimin Zhao

Molecular modeling and mutational analysis (site-directed mutagenesis and saturation mutagenesis) were used to probe the molecular determinants of the substrate specificity of aminopyrrolnitrin oxygenase (PrnD) from Pseudomonas fluorescens Pf-5. There are 17 putative substrate-contacting residues, and mutations at two of the positions, positions 312 and 277, could modulate the enzyme substrate specificity separately or in combination. Interestingly, several of the mutants obtained exhibited higher catalytic efficiency (approximately two- to sevenfold higher) with the physiological substrate aminopyrrolnitrin than the wild-type enzyme exhibited.


Molecular BioSystems | 2012

The Botrytis cinerea type III polyketide synthase shows unprecedented high catalytic efficiency toward long chain acyl-CoAs

Marimuthu Jeya; Tae Su Kim; Manish Kumar Tiwari; Jinglin Li; Huimin Zhao; Jung Kul Lee

BPKS from Botrytis cinerea is a novel type III polyketide synthase that accepts C(4)-C(18) aliphatic acyl-CoAs and benzoyl-CoA as the starters to form pyrones, resorcylic acids and resorcinols through sequential condensation with malonyl-CoA. The catalytic efficiency (k(cat)/K(m)) of BPKS was 2.8 × 10(5) s(-1) M(-1) for palmitoyl-CoA, the highest ever reported. Substrate docking analyses addressed the unique features of BPKS such as its high activity and high specificity toward long chain acyl-CoAs.


Chemical Engineering Science | 2013

Challenges and opportunities in synthetic biology for chemical engineers

Yunzi Luo; Jung Kul Lee; Huimin Zhao

Synthetic biology provides numerous great opportunities for chemical engineers in the development of new processes for large-scale production of biofuels, value-added chemicals, and protein therapeutics. However, challenges across all scales abound. In particular, the modularization and standardization of the components in a biological system, so-called biological parts, remain the biggest obstacle in synthetic biology. In this perspective, we will discuss the main challenges and opportunities in the rapidly growing synthetic biology field and the important roles that chemical engineers can play in its advancement.


Enzyme and Microbial Technology | 2014

Cloning and characterization of a galactitol 2-dehydrogenase from Rhizobium legumenosarum and its application in D-tagatose production.

Sujit Sadashiv Jagtap; Ranjitha Singh; Yun Chan Kang; Huimin Zhao; Jung Kul Lee

Galactitol 2-dehydrogenase (GDH) belongs to the protein subfamily of short-chain dehydrogenases/reductases and can be used to produce optically pure building blocks and for the bioconversion of bioactive compounds. An NAD(+)-dependent GDH from Rhizobium leguminosarum bv. viciae 3841 (RlGDH) was cloned and overexpressed in Escherichia coli. The RlGDH protein was purified as an active soluble form using His-tag affinity chromatography. The molecular mass of the purified enzyme was estimated to be 28kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 114kDa by gel filtration chromatography, suggesting that the enzyme is a homotetramer. The enzyme has an optimal pH and temperature of 9.5 and 35°C, respectively. The purified recombinant RlGDH catalyzed the oxidation of a wide range of substrates, including polyvalent aliphatic alcohols and polyols, to the corresponding ketones and ketoses. Among various polyols, galactitol was the preferred substrate of RlGDH with a Km of 8.8mM, kcat of 835min(-1) and a kcat/Km of 94.9min(-1)mM(-1). Although GDHs have been characterized from a few other sources, RlGDH is distinguished from other GDHs by its higher specific activity for galactitol and broad substrate spectrum, making RlGDH a good choice for practical applications.


Bioorganic & Medicinal Chemistry Letters | 2012

Mechanistic studies on the flavin:NADH reductase (PrnF) from Pseudomonas fluorescens involved in arylamine oxygenation.

Manish Kumar Tiwari; Raushan Kumar Singh; Jung Kul Lee; Huimin Zhao

We report the mechanistic studies of a FAD:NADH reductase (PrnF) involved in arylamine oxygenation. PrnF catalyzes the reduction of FAD via a sequential ordered bi-bi mechanism with NADH as the first substrate to bind and FADH(2) as the first product to be released. The residues Asp145 and His146 are proposed as catalytic acid/base residues for PrnF based on pH profile and molecular dynamics simulation studies. These studies provide the first detailed account of the mechanism of the flavin reductase involved in arylamine oxygenation.


Molecular BioSystems | 2012

A type III polyketide synthase from Rhizobium etli condenses malonyl CoAs to a heptaketide pyrone with unusually high catalytic efficiency

Marimuthu Jeya; Tae Su Kim; Manish Kumar Tiwari; Jinglin Li; Huimin Zhao; Jung Kul Lee

A novel type III polyketide synthase (RePKS) from Rhizobium etli produced a heptaketide pyrone using acetyl-CoA and six molecules of malonyl-CoA. Its catalytic efficiency (k(cat)/K(m) = 5230 mM(-1) min(-1)) for malonyl CoA was found to be the highest ever reported. Molecular dynamics studies revealed the unique features of RePKS.


Molecular BioSystems | 2010

A diverse family of Type III polyketide synthases in Eucalyptus species.

Sheryl B. Rubin-Pitel; Yunzi Luo; Jung Kul Lee; Huimin Zhao

Eucalyptus species synthesize a wealth of polyketide natural products, but no relevant biosynthetic enzyme has been identified. Degenerate primers designed from conserved regions of fourteen chalcone synthase superfamily enzymes were used to isolate gene fragments from at least five different Type III polyketide synthases (PKSs) in E. camaldulensis and E. robusta.

Collaboration


Dive into the Jung Kul Lee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marimuthu Jeya

Madurai Kamaraj University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samuel Kaplan

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge