Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manish Kumar Tiwari is active.

Publication


Featured researches published by Manish Kumar Tiwari.


International Journal of Molecular Sciences | 2013

From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes.

Raushan Kumar Singh; Manish Kumar Tiwari; Ranjitha Singh; Jung-Kul Lee

Enzymes found in nature have been exploited in industry due to their inherent catalytic properties in complex chemical processes under mild experimental and environmental conditions. The desired industrial goal is often difficult to achieve using the native form of the enzyme. Recent developments in protein engineering have revolutionized the development of commercially available enzymes into better industrial catalysts. Protein engineering aims at modifying the sequence of a protein, and hence its structure, to create enzymes with improved functional properties such as stability, specific activity, inhibition by reaction products, and selectivity towards non-natural substrates. Soluble enzymes are often immobilized onto solid insoluble supports to be reused in continuous processes and to facilitate the economical recovery of the enzyme after the reaction without any significant loss to its biochemical properties. Immobilization confers considerable stability towards temperature variations and organic solvents. Multipoint and multisubunit covalent attachments of enzymes on appropriately functionalized supports via linkers provide rigidity to the immobilized enzyme structure, ultimately resulting in improved enzyme stability. Protein engineering and immobilization techniques are sequential and compatible approaches for the improvement of enzyme properties. The present review highlights and summarizes various studies that have aimed to improve the biochemical properties of industrially significant enzymes.


Journal of Molecular Graphics & Modelling | 2010

Molecular modeling studies of l-arabinitol 4-dehydrogenase of Hypocrea jecorina: Its binding interactions with substrate and cofactor

Manish Kumar Tiwari; Jung-Kul Lee

L-arabinitol 4-dehydrogenase (LAD1; EC 1.1.1.12) is an enzyme in the L-arabinose catabolic pathway of fungi that catalyzes the conversion of L-arabinitol into L-xylulose. The primary objective of this work is to identify the catalytic and coenzyme binding domains of LAD1 from Hypocrea jecorina in order to provide better insight into the possible catalytic events in these domains. The 3D structure of NAD(+)-dependent LAD1 was developed based on the crystal structure of human sorbitol dehydrogenase as a template. A series of molecular mechanics and dynamics operations were performed to find the most stable binding interaction for the enzyme and its ligands. Using the verified model, a docking study was performed with the substrate L-arabinitol, Zn(2+) and NAD(+). This study found a catalytic Zn(2+) binding domain (Cys66, His91, Glu92 and Glu176) and a cofactor NAD(+) binding domain (Gly202, ILeu204, Gly205, Cys273, Arg229 and Val298) with strong hydrogen bonding contacts with the substrate and cofactor. The binding pockets of the enzyme for l-arabinitol, NAD(+), and Zn(2+) have been explicitly defined. The results from this study should guide future mutagenesis studies and provide useful clues for engineering enzymes to improve the utilization of polyols for rare sugar production.


Bioorganic & Medicinal Chemistry Letters | 2012

Characterization of H2O-forming NADH oxidase from Streptococcus pyogenes and its application in l-rare sugar production

Hui Gao; Manish Kumar Tiwari; Yun Chan Kang; Jung-Kul Lee

A nicotinamide adenine dinucleotide (NADH) oxidase from Streptococcus pyogenes MGAS10394 (SpNox) was cloned and overexpressed in Escherichia coli BL21 (DE3). The purified SpNox enzyme had optimal pH and temperature of 7.0 and 55°C, respectively, with a K(m) of 27.0μM and a k(cat)/K(m) of 1.1×10(7)s(-1)M(-1). SpNox showed the highest activity among all known NADH oxidases, and site-directed mutagenesis and docking analysis shed light on the molecular basis of its unusually high activity. The characteristics of SpNox may prove to be useful for NAD(+) regeneration in the production of l-rare sugar.


Journal of Biological Chemistry | 2012

Role of Conserved Glycine in Zinc-dependent Medium Chain Dehydrogenase/Reductase Superfamily

Manish Kumar Tiwari; Raushan Kumar Singh; Ranjitha Singh; Marimuthu Jeya; Huimin Zhao; Jung Kul Lee

Background: The function of second-shell residues is not well understood in zinc-dependent medium chain dehydrogenase/reductases (MDRs). Results: The strictly conserved second-shell residue Gly-77 was characterized using a wide variety of methods. Conclusion: Gly-77 maintains the metal binding affinity and electronic state of the catalytic zinc ion. Significance: This study provides the first insights into the role of a conserved glycine in the MDR superfamily. The medium-chain dehydrogenase/reductase (MDR) superfamily consists of a large group of enzymes with a broad range of activities. Members of this superfamily are currently the subject of intensive investigation, but many aspects, including the zinc dependence of MDR superfamily proteins, have not yet have been adequately investigated. Using a density functional theory-based screening strategy, we have identified a strictly conserved glycine residue (Gly) in the zinc-dependent MDR superfamily. To elucidate the role of this conserved Gly in MDR, we carried out a comprehensive structural, functional, and computational analysis of four MDR enzymes through a series of studies including site-directed mutagenesis, isothermal titration calorimetry, electron paramagnetic resonance (EPR), quantum mechanics, and molecular mechanics analysis. Gly substitution by other amino acids posed a significant threat to the metal binding affinity and activity of MDR superfamily enzymes. Mutagenesis at the conserved Gly resulted in alterations in the coordination of the catalytic zinc ion, with concomitant changes in metal-ligand bond length, bond angle, and the affinity (Kd) toward the zinc ion. The Gly mutants also showed different spectroscopic properties in EPR compared with those of the wild type, indicating that the binding geometries of the zinc to the zinc binding ligands were changed by the mutation. The present results demonstrate that the conserved Gly in the GHE motif plays a role in maintaining the metal binding affinity and the electronic state of the catalytic zinc ion during catalysis of the MDR superfamily enzymes.


Enzyme and Microbial Technology | 2012

Cloning and characterization of a thermostable H2O-forming NADH oxidase from Lactobacillus rhamnosus.

Ye-Wang Zhang; Manish Kumar Tiwari; Hui Gao; Saurabh Sudha Dhiman; Marimuthu Jeya; Jung-Kul Lee

NADH oxidase (Nox) catalyzes the conversion of NADH to NAD(+). A previously uncharacterized Nox gene (LrNox) was cloned from Lactobacillus rhamnosus and overexpressed in Escherichia coli BL21(DE3). Sequence analysis revealed an open reading frame of 1359 bp, capable of encoding a polypeptide of 453 amino acid residues. The molecular mass of the purified LrNox enzyme was estimated to be ~50 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and 100 kDa by gel filtration chromatography, suggesting that the enzyme is a homodimer. The enzyme had optimal activity at pH 5.6 and temperature 65 °C, and k(cat)/K(m) of 3.77×10(7) s(-1) M(-1), the highest ever reported. Heat inactivation studies revealed that LrNox had high thermostability, with a half-life of 120 min at 80 °C. Molecular dynamics simulation studies shed light on the factors contributing to the high activity of LrNox. Although the properties of Nox from several microorganisms have been reported, this is the first report on the characterization of a recombinant H(2)O-forming Nox with high activity and thermostability. The characteristics of the LrNox enzyme could prove to be of interest in industrial applications such as NAD(+) regeneration.


PLOS ONE | 2015

A highly efficient recombinant laccase from the yeast Yarrowia lipolytica and its application in the hydrolysis of biomass.

Dayanand Kalyani; Manish Kumar Tiwari; Jinglin Li; Sun Chang Kim; Vipin Chandra Kalia; Yun Chan Kang; Jung-Kul Lee

A modified thermal asymmetric interlaced polymerase chain reaction was performed to obtain the first yeast laccase gene (YlLac) from the isolated yeast Yarrowia lipolytica. The 1557-bp full-length cDNA of YlLac encoded a mature laccase protein containing 519 amino acids preceded by a signal peptide of 19 amino acids, and the YlLac gene was expressed in the yeast Pichia pastoris. YlLac is a monomeric glycoprotein with a molecular mass of ~55 kDa as determined by polyacrylamide-gel electrophoresis. It showed a higher catalytic efficiency towards 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (kcat/Km = 17.5 s-1 μM-1) and 2,6-dimethoxyphenol (kcat/Km = 16.1 s-1 μM-1) than other reported laccases. The standard redox potential of the T1 site of the enzyme was found to be 772 mV. The highest catalytic efficiency of the yeast recombinant laccase, YlLac, makes it a good candidate for industrial applications: it removes phenolic compounds in acid-pretreated woody biomass (Populus balsamifera) and enhanced saccharification.


Computational and structural biotechnology journal | 2012

Computational approaches for rational design of proteins with novel functionalities

Manish Kumar Tiwari; Ranjitha Singh; Raushan Kumar Singh; In-Won Kim; Jung-Kul Lee

Proteins are the most multifaceted macromolecules in living systems and have various important functions, including structural, catalytic, sensory, and regulatory functions. Rational design of enzymes is a great challenge to our understanding of protein structure and physical chemistry and has numerous potential applications. Protein design algorithms have been applied to design or engineer proteins that fold, fold faster, catalyze, catalyze faster, signal, and adopt preferred conformational states. The field of de novo protein design, although only a few decades old, is beginning to produce exciting results. Developments in this field are already having a significant impact on biotechnology and chemical biology. The application of powerful computational methods for functional protein designing has recently succeeded at engineering target activities. Here, we review recently reported de novo functional proteins that were developed using various protein design approaches, including rational design, computational optimization, and selection from combinatorial libraries, highlighting recent advances and successes.


Applied and Environmental Microbiology | 2012

Molecular Determinants of the Cofactor Specificity of Ribitol Dehydrogenase, a Short-Chain Dehydrogenase/Reductase

Hee-Jung Moon; Manish Kumar Tiwari; Ranjitha Singh; Yun Chan Kang; Jung-Kul Lee

ABSTRACT Ribitol dehydrogenase from Zymomonas mobilis (ZmRDH) catalyzes the conversion of ribitol to d-ribulose and concomitantly reduces NAD(P)+ to NAD(P)H. A systematic approach involving an initial sequence alignment-based residue screening, followed by a homology model-based screening and site-directed mutagenesis of the screened residues, was used to study the molecular determinants of the cofactor specificity of ZmRDH. A homologous conserved amino acid, Ser156, in the substrate-binding pocket of the wild-type ZmRDH was identified as an important residue affecting the cofactor specificity of ZmRDH. Further insights into the function of the Ser156 residue were obtained by substituting it with other hydrophobic nonpolar or polar amino acids. Substituting Ser156 with the negatively charged amino acids (Asp and Glu) altered the cofactor specificity of ZmRDH toward NAD+ (S156D, [k cat/Km ,NAD]/[k cat/Km ,NADP] = 10.9, where Km ,NAD is the Km for NAD+ and Km ,NADP is the Km for NADP+). In contrast, the mutants containing positively charged amino acids (His, Lys, or Arg) at position 156 showed a higher efficiency with NADP+ as the cofactor (S156H, [k cat/Km ,NAD]/[k cat/Km ,NADP] = 0.11). These data, in addition to those of molecular dynamics and isothermal titration calorimetry studies, suggest that the cofactor specificity of ZmRDH can be modulated by manipulating the amino acid residue at position 156.


Molecular BioSystems | 2012

The Botrytis cinerea type III polyketide synthase shows unprecedented high catalytic efficiency toward long chain acyl-CoAs

Marimuthu Jeya; Tae Su Kim; Manish Kumar Tiwari; Jinglin Li; Huimin Zhao; Jung Kul Lee

BPKS from Botrytis cinerea is a novel type III polyketide synthase that accepts C(4)-C(18) aliphatic acyl-CoAs and benzoyl-CoA as the starters to form pyrones, resorcylic acids and resorcinols through sequential condensation with malonyl-CoA. The catalytic efficiency (k(cat)/K(m)) of BPKS was 2.8 × 10(5) s(-1) M(-1) for palmitoyl-CoA, the highest ever reported. Substrate docking analyses addressed the unique features of BPKS such as its high activity and high specificity toward long chain acyl-CoAs.


Alzheimers & Dementia | 2016

β-Amyloid pathogenesis: Chemical properties versus cellular levels

Manish Kumar Tiwari; Kasper Planeta Kepp

Although genetic Aβ variants cause early‐onset Alzheimers disease, literature reports on Aβ properties are heterogeneous, obscuring molecular mechanisms, as illustrated by recent failures of Aβ‐level targeting trials. Thus, we combined available data on Aβ levels and ratios, aggregation propensities, toxicities, and patient data for Aβ variants and correlated these data to identify heterogeneity, significant relations, and basis for consensus. Despite heterogeneity, age of disease onset correlates to Aβ levels (R2 = 0.38, P = .018), but not to toxicities, Aβ42 levels, Aβ42/Aβ40 ratios, or aggregation propensities. Cytotoxicity correlates inversely with total Aβ42 (R2 = 0.65, P = .016) and Aβ42/Aβ40 ratios (R2 = 0.76, P = .005), i.e., chemical properties that increase Aβ42 also reduce toxicity. The complexity and heterogeneity of data reveal the need to understand these phenotypes better, e.g., by focusing on the chemical properties of the involved Aβ species.

Collaboration


Dive into the Manish Kumar Tiwari's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge