Jung Mook Choi
Sungkyunkwan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jung Mook Choi.
PLOS ONE | 2011
Soo Jin Yang; Jung Mook Choi; Seoung Wan Chae; Won Jun Kim; Se Eun Park; Eun-Jung Rhee; Won Young Lee; Ki Won Oh; Sung Woo Park; Sun Woo Kim; Cheol-Young Park
Background Sirt6 has been implicated in the regulation of hepatic lipid metabolism and the development of hepatic steatosis. The aim of this study was to address the potential role of Sirt6 in the protective effects of rosiglitazone (RGZ) on hepatic steatosis. Methods To investigate the effect of RGZ on hepatic steatosis, rats were treated with RGZ (4 mg·kg−1·day−1) by stomach gavage for 6 weeks. The involvement of Sirt6 in the RGZs regulation was evaluated by Sirt6 knockdown in AML12 mouse hepatocytes. Results RGZ treatment ameliorated hepatic lipid accumulation and increased expression of Sirt6, peroxisome proliferator-activated receptor gamma coactivtor-1-α (Ppargc1a/PGC1-α) and Forkhead box O1 (Foxo1) in rat livers. AMP-activated protein kinase (AMPK) phosphorylation was also increased by RGZ, accompanied by alterations in phosphorylation of LKB1. Interestingly, in free fatty acid-treated cells, Sirt6 knockdown increased hepatocyte lipid accumulation measured as increased triglyceride contents (p = 0.035), suggesting that Sirt6 may be beneficial in reducing hepatic fat accumulation. In addition, Sirt6 knockdown abolished the effects of RGZ on hepatocyte fat accumulation, mRNA and protein expression of Ppargc1a/PGC1-α and Foxo1, and phosphorylation levels of LKB1 and AMPK, suggesting that Sirt6 is involved in RGZ-mediated metabolic effects. Conclusion Our results demonstrate that RGZ significantly decreased hepatic lipid accumulation, and that this process appeared to be mediated by the activation of the Sirt6-AMPK pathway. We propose Sirt6 as a possible therapeutic target for hepatic steatosis.
Journal of Nutritional Biochemistry | 2014
Soo Jin Yang; Jung Mook Choi; Lisa Kim; Se Eun Park; Eun-Jung Rhee; Won Young Lee; Ki Won Oh; Sung Woo Park; Cheol-Young Park
Nicotinic acid (NA) and nicotinamide (NAM) are major forms of niacin and exert their physiological functions as precursors of nicotinamide adenine dinucleotide (NAD). Sirtuins, which are NAD-dependent deacetylases, regulate glucose and lipid metabolism and are implicated in the pathophysiology of aging, diabetes, and hepatic steatosis. The aim of this study was to investigate the effects of two NAD donors, NA and NAM, on glucose metabolism and the hepatic NAD-sirtuin pathway. The effects were investigated in OLETF rats, a rodent model of obesity and type 2 diabetes. OLETF rats were divided into five groups: (1) high fat (HF) diet, (2) HF diet and 10 mg NA/kg body weight (BW)/day (NA 10), (3) HF diet and 100 mg NA/kg BW/day (NA 100), (4) HF diet and 10 mg NAM/kg BW/day (NAM 10), and (5) HF diet and 100 mg NAM/kg BW/day (NAM 100). NA and NAM were delivered via drinking water for four weeks. NAM 100 treatment affected glucose control significantly, as shown by lower levels of accumulative area under the curve during oral glucose tolerance test, serum fasting glucose, serum fasting insulin, and homeostasis model assessment of insulin resistance, and higher levels of serum adiponectin. With regard to NAD-sirtuin pathway, intracellular nicotinamide phosphoribosyltransferase, NAD, the NAD/NADH ratio, Sirt1, 2, 3, and 6 mRNA expressions, and Sirt1 activity all increased in livers of NAM 100-treated rats. These alterations were accompanied by the increased levels of proliferator-activated receptor gamma, coactivator 1 alpha and mitochondrial DNA. The effect of NA treatment was less evident than that of NAM 100. These results demonstrate that NAM is more effective than NA on the regulation of glucose metabolism and the NAD-sirtuin pathway, which may relate to the altered mitochondrial biogenesis.
Journal of Nutritional Biochemistry | 2015
Soo Jin Yang; Jung Mook Choi; Se Eun Park; Eun-Jung Rhee; Won Young Lee; Ki Won Oh; Sung Woo Park; Cheol-Young Park
Bitter melon (BM; Momordica charantia) has been used as a treatment method for various diseases including cancer and diabetes. The objective of this study was to investigate whether BM has preventive effects against insulin resistance and diabetes and to identify the underlying mechanism by which BM ameliorates insulin resistance in obese and diabetic rats. The rats were separated into three groups as follows: (a) high-fat (HF) diet control, (b) HF diet and 1% BM and (c) HF diet and 3% BM. After 6 weeks of assigned treatments, body weight and food intake were not altered by BM administration. Bitter melon treatment significantly improved glucose tolerance and insulin sensitivity. The levels of proinflammatory cytokines were significantly down-regulated in liver, muscle and epididymal fats from BM-treated rats. The activation of nuclear factor-κB (NF-κB) in the liver and muscle was decreased by BM compared with HF controls. The 3% BM supplementation significantly increased the levels of phospho-insulin receptor substrate-1 (Tyr612) and phospho-Akt (Ser473). It also significantly decreased the levels of phospho-NF-κB (p65) (Ser536) and phospho-c-Jun N-terminal kinase (JNK) (Thr183/Tyr185) in liver, muscle and epididymal fats. The findings of this study indicate that BM exerted preventive effects against insulin resistance and diabetes through the modulation of NF-κB and JNK pathways. Therefore, BM may be useful in the prevention of insulin resistance and diabetes.
Biochemical and Biophysical Research Communications | 2011
Soo Jin Yang; Jung Mook Choi; Lisa Kim; Byung-Joon Kim; Jin Hee Sohn; Won Jun Kim; Se Eun Park; Eun-Jung Rhee; Won Young Lee; Ki Won Oh; Sung Woo Park; Sun Woo Kim; Cheol-Young Park
Ezetimibe is a cholesterol-lowering agent targeting Niemann-Pick C1-like 1, an intestinal cholesterol transporter. Inhibition of intestinal cholesterol absorption with ezetimibe may ameliorate several metabolic disorders including hepatic steatosis and insulin resistance. In this study, we investigated whether chronic ezetimibe treatment improves glycemic control and pancreatic beta cell mass, and alters levels of glucagon-like peptide-1 (GLP-1), an incretin hormone involved in glucose homeostasis. Male LETO and OLETF rats were treated with vehicle or ezetimibe (10 mg kg(-1)day(-1)) for 20 weeks via stomach gavage. OLETF rats were diabetic with hyperglycemia and significant decreases in pancreatic size and beta cell mass compared with LETO lean controls. Chronic treatment of OLETF rats with ezetimibe improved glycemic control during oral glucose tolerance test compared with OLETF controls. Moreover, ezetimibe treatment rescued the reduced pancreatic size and beta cell mass in OLETF rats. Interestingly, ezetimibe significantly decreased serum dipeptidyl peptidase-4 activity and increased serum active GLP-1 in OLETF rats without altering serum total GLP-1. These findings demonstrated that chronic administration of ezetimibe improves glycemic control and pancreatic beta cell mass, and increases serum active GLP-1 levels, suggesting possible involvement of GLP-1 in the ezetimibe-mediated beneficial effects on glycemic control.
PLOS ONE | 2014
Soo Jin Yang; Jung Mook Choi; Eugene B. Chang; Sung Woo Park; Cheol-Young Park
Background Sirtuin (Sirt), a sensor of the cell metabolic state, regulates glucose and lipid metabolism. The aim of this study was to address whether rosiglitazone (RGZ) alters hepatic Sirt1 and whether Sirt1 and/or Sirt6 have a regulatory role in the protective effects of RGZ on hepatocyte steatosis. Methods To investigate the effect of RGZ on hepatic Sirt1, rats were administered with RGZ for 6 weeks. The involvement of Sirt1/6 in the RGZ-mediated effect against hepatic steatosis was evaluated by single or double knockdown of Sirt1 and Sirt6 in a hepatocyte steatosis model. Results RGZ in vivo increased Sirt1 expression and its activity in rat livers. In a hepatocyte steatosis model, RGZ significantly reduced lipid accumulation and activated the Sirt1/6-LKB1-AMPK pathway. Sirt1 knockdown abolished the effects of RGZ with regard to hepatocyte fat accumulation and the Sirt1/6-LKB1-AMPK pathway, suggesting that Sirt1 is a key regulator of RGZ-mediated metabolic processes. Sirt6 knockdown inhibited the protective effects of RGZ to a lesser extent than Sirt1, and double knockdown of Sirt1/6 showed no synergistic effects. Conclusion Our results demonstrate that Sirt1/6 are involved in the RGZ-mediated effects on hepatocyte steatosis, and the regulatory effects of Sirt1 and Sirt6 are not synergistic but compensatory for improving hepatocyte steatosis.
Metabolism-clinical and Experimental | 2015
Eugene B. Chang; Lisa Kim; Jung Mook Choi; Se Eun Park; Eun-Jung Rhee; Won Young Lee; Ki-Won Oh; Sung-Woo Park; Dong Il Park; Cheol-Young Park
OBJECTIVE Ezetimibe is known as a Niemann-Pick C1-Like 1 (NPC1L1) inhibitor and has been used as an agent for hypercholesterolemia. In our previous study, ezetimibe administration improved glycemic control and increased glucagon like peptide-1 (GLP-1), an incretin hormone with anti-diabetic properties. However, the mechanisms by which ezetimibe stimulates GLP-1 secretion are not fully understood. Thus, the specific aim of this study was to investigate the mechanism(s) by which ezetimibe stimulates GLP-1 secretion. MATERIALS/METHODS Male KK/H1J mice were divided into following groups: AIN-93G (NC), NC with ezetimibe (10 mg/kg/day), 45% high fat (HF) diet, and HF diet with ezetimibe. To investigate the role of ezetimibe in glucose homeostasis and GLP-1 secretion, an insulin tolerance test was performed and serum and intestinal GLP-1 levels and intestinal mRNA expression involved in GLP-1 synthesis were measured after 6 weeks of ezetimibe treatment. In vivo and in vitro dipeptidyl peptidase-4 (DPP-4) inhibition assays were employed to demonstrate the association between ezetimibe-induced GLP-1 change and DPP-4. The molecular mechanism by which ezetimibe affects GLP-1 secretion was evaluated by using human enteroendocrine NCI-H716 cells. RESULTS Ezetimibe supplementation significantly ameliorated HF-increased glucose and insulin resistance in the type 2 diabetic KK/H1J mouse model. Serum and intestinal active GLP-1 levels were significantly increased by ezetimibe in HF-fed animals. However, mRNA expression of genes involved in intestinal GLP-1 synthesis was not altered. Furthermore, ezetimibe did not inhibit the activity of either in vivo or in vitro dipeptidyl peptidase-4 (DPP-4). The direct effects of ezetimibe on GLP-1 secretion and L cell secretory mechanisms were examined in human NCI-H716 intestinal cells. Ezetimibe significantly stimulated active GLP-1 secretion, which was accompanied by the activation of mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK)/extracellular signal-regulated kinase (ERK). Ezetimibe-increased GLP-1 secretion was abrogated by inhibiting the MEK/ERK pathway with PD98059. CONCLUSION These findings suggest a possible novel biological role of ezetimibe in glycemic control to stimulate intestinal GLP-1 secretion via the MEK/ERK signaling pathway.
Life Sciences | 2015
Eugene B. Chang; Jung Mook Choi; Se Eun Park; Eun-Jung Rhee; Won Young Lee; Ki-Won Oh; Sung-Woo Park; Cheol-Young Park
AIMS Previous reports have demonstrated that the adipocyte-derived peptide adiponectin is closely associated with insulin resistance due to its insulin-sensitizing and anti-inflammatory properties in peripheral tissues; however the autocrine effects of adiponectin remain elusive. This study investigated regulatory effects of adiponectin on glucose transport and insulin signaling in insulin-sensitive or insulin-resistant 3T3-L1 adipocytes. MAIN METHODS 3T3-L1 fibroblasts were transfected with non-target or adiponectin (ADN) siRNA and differentiated. Chronic treatment with insulin (24h, 100 nM) was employed to induce insulin resistance in differentiated adipocytes. Insulin-stimulated glucose transport was measured and protein and mRNA levels were assessed by Western blot and RT-PCR. KEY FINDINGS Prolonged incubation with insulin significantly reduced insulin-stimulated glucose uptake, suggesting the development of insulin resistance and adiponectin mRNA expression. In this insulin-resistant condition, adiponectin deletion did not alter insulin-stimulated glucose uptake. In insulin-sensitive adipocytes, adiponectin ablation reduced insulin-stimulated glucose uptake, expression of IRS-1 and GLUT4, and GLUT4 translocation to the membrane. Adiponectin knockdown did not affect the activation of AKT and p38MAPK (phosphorylation form/total form), but significantly decreased the activation of AMPK in insulin-responsive adipocytes. SIGNIFICANCE Adiponectin deficiency suppresses insulin-induced glucose uptake, insulin signaling, and the AMPK pathway only in insulin-responsive 3T3-L1 adipocytes.
PLOS ONE | 2016
Se Eun Park; Cheol-Young Park; Jung Mook Choi; Eugene B. Chang; Eun-Jung Rhee; Won Young Lee; Ki Won Oh; Sung Woo Park; Eun Seok Kang; Hyun Chul Lee; Bong Soo Cha
Visceral fat accretion is a hallmark of aging and is associated with aging-induced metabolic dysfunction. PPARγ agonist was reported to improve insulin sensitivity by redistributing fat from visceral fat to subcutaneous fat. The purpose of this study was to investigate the underlying mechanisms by which aging affects adipose tissue remodeling in a type 2 diabetic animal model and through which PPARγ activation modulates aging-related fat tissue distribution. At the ages of 21, 31 and 43 weeks, OLETF rats as an animal model of type 2 diabetes were evaluated for aging-related effects on adipose tissue metabolism in subcutaneous and visceral fat depots. During aging, the ratio of visceral fat weight to subcutaneous fat weight (V/S ratio) increased. Aging significantly increased the mRNA expression of genes involved in lipogenesis such as lipoprotein lipase, fatty acid binding protein aP2, lipin 1, and diacylglycerol acyltransferase 1, which were more prominent in visceral fat than subcutaneous fat. The mRNA expression of adipose triglyceride lipase, which is involved in basal lipolysis and fatty acid recycling, was also increased, more in visceral fat compared to subcutaneous fat during aging. The mRNA levels of the genes associated with lipid oxidation were increased, whereas the mRNA levels of genes associated with energy expenditure showed no significant change during aging. PPARγ agonist treatment in OLETF rats resulted in fat redistribution with a decreasing V/S ratio and improved glucose intolerance. The genes involved in lipogenesis decreased in visceral fat of the PPARγ agonist-treated rats. During aging, fat distribution was changed by stimulating lipid uptake and esterification in visceral fat rather than subcutaneous fat, and by altering the lipid oxidation.
Yonsei Medical Journal | 2013
Sang-Man Jin; Bae Jun Oh; Suel Lee; Jung Mook Choi; Soo Jin Yang; Sung Woo Park; Kwang-Won Kim; Jae Hyeon Kim; Cheol-Young Park
Purpose Although the presence of cannabinoid type 1 (CB1) receptor in islets has been reported, the major contributor to the protective effect of rimonabant on islet morphology is unknown. We determined whether the protective effect of rimonabant on pancreatic islet morphology is valid in established diabetes and also whether any effect was independent of decreased food intake. Materials and Methods After diabetes was confirmed, Otsuka Long-Evans Tokushima Fatty rats, aged 32 weeks, were treated with rimonabant (30 mg/kg/d, rimonabant group) for 6 weeks. Metabolic profiles and islet morphology of rats treated with rimonabant were compared with those of controls without treatment (control group), a pair-fed control group, and rats treated with rosiglitazone (4 mg/kg/d, rosiglitazone group). Results Compared to the control group, rats treated with rimonabant exhibited reduced glycated albumin levels (p<0.001), islet fibrosis (p<0.01), and improved glucose tolerance (p<0.05), with no differences from the pair-fed control group. The retroperitoneal adipose tissue mass was lower in the rimonabant group than those of the pair-fed control and rosiglitazone groups (p<0.05). Rimonabant, pair-fed control, and rosiglitazone groups showed decreased insulin resistance and increased adiponectin, with no differences between the rimonabant and pair-fed control groups. Conclusion Rimonabant had a protective effect on islet morphology in vivo even in established diabetes. However, the protective effect was also reproduced by pair-feeding. Thus, the results of this study did not support the significance of islet CB1 receptors in islet protection with rimonabant in established obesity-associated type 2 diabetes.
Molecular Medicine Reports | 2014
Eugene B. Chang; Jung Mook Choi; Won Jun Kim; Eun-Jung Rhee; Ki Won Oh; Won Young Lee; Se Eun Park; Sung Woo Park; Cheol-Young Park