Jung Yu C. Hsu
University of California, San Francisco
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jung Yu C. Hsu.
The Journal of Neuroscience | 2006
Jung Yu C. Hsu; Robert J. McKeon; Staci Goussev; Zena Werb; Jung Uek Lee; Alpa Trivedi; Linda J. Noble-Haeusslein
Matrix metalloproteinases (MMPs) are proteolytic enzymes that are involved in both injury and repair mechanisms in the CNS. Pharmacological blockade of MMPs, limited to the first several days after spinal cord injury, improves locomotor recovery. This beneficial response is, however, lost when treatment is extended beyond the acutely injured cord to include wound healing and tissue remodeling. This suggests that some MMPs play a beneficial role in wound healing. To test this hypothesis, we investigated the role of MMP-2, which is actively expressed during wound healing, in white matter sparing and axonal plasticity, the formation of a glial scar, and locomotor recovery after spinal cord injury. MMP-2 increased between 7 and 14 d after injury, where it was immunolocalized in reactive astrocytes bordering the lesion epicenter. There was reduced white matter sparing and fewer serotonergic fibers, caudal to the lesion in injured MMP-2 null animals. MMP-2 deficiency also resulted in increased immunoreactivity to chondroitin sulfate proteoglycans and a more extensive astrocytic scar. Most importantly, locomotion in an open field, performance on a rotarod, and grid walking were significantly impaired in injured MMP-2 null mice. Our findings suggest that MMP-2 promotes functional recovery after injury by regulating the formation of a glial scar and white matter sparing and/or axonal plasticity. Thus, strategies exploiting MMPs as therapeutic targets must balance these beneficial effects during wound healing with their adverse interactions in the acutely injured spinal cord.
Journal of Neuroscience Research | 2003
William D. Whetstone; Jung Yu C. Hsu; Manuel S. Eisenberg; Zena Werb; Linda J. Noble-Haeusslein
Spinal cord injury produces prominent disruption of the blood‐spinal cord barrier. We have defined the blood‐spinal cord barrier breakdown to the protein luciferase (61 kDa) in the acutely injured murine spinal cord and during revascularization. We show that newly formed and regenerating blood vessels that have abnormal permeability exhibit differential expression of the glucose‐1 transporter (Glut‐1), and that its expression is dependent on astrocytes. There was overt extravasation of luciferase within the first hour after injury, a period that coincided with marked tissue disruption within the epicenter of the lesion. Although there was a significant reduction in the number of blood vessels relative to controls by 24 hr after injury, abnormal barrier permeability remained significantly elevated. A second peak of abnormal barrier permeability at 3–7 days postinjury coincided with prominent revascularization of the epicenter. The barrier to luciferase was restored by 21 days postinjury and vascularity was similar to that of controls. During wound‐healing process, the cord was reorganized into distinct domains. Between 14 and 21 days postinjury, each domain consisted primarily of nonneuronal cells, including macrophages. Astrocytes were limited characteristically to the perimeter of each domain. Only blood vessels affiliated closely with astrocytes in the perimeter expressed Glut‐1, whereas blood vessels within each domain of the repairing cord did not express it. Together, these data demonstrate that both injured and regenerating vessels exhibit abnormal permeability and suggest that Glut‐1 expression during revascularization is dependent on the presence of astrocytes.
The Journal of Neuroscience | 2008
Jung Yu C. Hsu; Lilly Y. W. Bourguignon; Christen M. Adams; Karine Peyrollier; Haoqian Zhang; Thomas M. Fandel; Christine L. Cun; Zena Werb; Linda J. Noble-Haeusslein
In the injured spinal cord, a glial scar forms and becomes a major obstacle to axonal regeneration. Formation of the glial scar involves migration of astrocytes toward the lesion. Matrix metalloproteinases (MMPs), including MMP-9 and MMP-2, govern cell migration through their ability to degrade constituents of the extracellular matrix. Although MMP-9 is expressed in reactive astrocytes, its involvement in astrocyte migration and formation of a glial scar is unknown. Here we found that spinal cord injured, wild-type mice expressing MMPs developed a more severe glial scar and enhanced expression of chondroitin sulfate proteoglycans, indicative of a more inhibitory environment for axonal regeneration/plasticity, than MMP-9 null mice. To determine whether MMP-9 mediates astrocyte migration, we conducted a scratch wound assay using astrocytes cultured from MMP-9 null, MMP-2 null, and wild-type mice. Gelatin zymography confirmed the expression of MMP-9 and MMP-2 in wild-type cultures. MMP-9 null astrocytes and wild-type astrocytes, treated with an MMP-9 inhibitor, exhibited impaired migration relative to untreated wild-type controls. MMP-9 null astrocytes showed abnormalities in the actin cytoskeletal organization and function but no detectable untoward effects on proliferation, cellular viability, or adhesion. Interestingly, MMP-2 null astrocytes showed increased migration, which could be attenuated in the presence of an MMP-9 inhibitor. Collectively, our studies provide explicit evidence that MMP-9 is integral to the formation of an inhibitory glial scar and cytoskeleton-mediated astrocyte migration. MMP-9 may thus be a promising therapeutic target to reduce glial scarring during wound healing after spinal cord injury.
Stroke | 2011
Yu Ching Lin; Tsui Ling Ko; Yang-Hsin Shih; Maan Yuh Anya Lin; Tz Win Fu; Hsiao Sheng Hsiao; Jung Yu C. Hsu; Yu-Show Fu
Background and Purpose— Stroke is a cerebrovascular defect that leads to many adverse neurological complications. Current pharmacological treatments for stroke remain unclear in their effectiveness, whereas stem cell transplantation shows considerable promise. Previously, we have shown that human umbilical mesenchymal stem cells (HUMSCs) can differentiate into neurons in neuronal-conditioned medium. Here we evaluate the therapeutic potential of HUMSC transplantation for ischemic stroke in rats. Methods— Focal cerebral ischemia was produced by middle cerebral artery occlusion and reperfusion. The HUMSCs treated with neuronal-conditioned medium or not treated were transplanted into the ischemic cortex 24 hours after surgery. Results— Histology and MRI revealed that rats implanted with HUMSCs treated with neuronal-conditioned medium or not treated exhibited a trend toward less infarct volume and significantly less atrophy compared with the control group, which received no HUMSCs. Moreover, rats receiving HUMSCs showed significant improvements in motor function, greater metabolic activity of cortical neurons, and better revascularization in the infarct cortex. Implanted HUMSCs, treated or not treated, survived in the infarct cortex for at least 36 days and released neuroprotective and growth-associated cytokines, including brain-derived neurotrophic factor, platelet-derived growth factor-AA, basic fibroblast growth factor, angiopoietin-2, CXCL-16, neutrophil-activating protein-2, and vascular endothelial growth factor receptor-3. Conclusions— Our results demonstrate the therapeutic benefits of HUMSC transplantation for ischemic stroke, likely due to the ability of the cells to produce growth-promoting factors. Thus, HUMSC transplantation may be an effective therapy in the future.
Brain Research | 2006
Jung Yu C. Hsu; Stuart A. Stein; Xiao Ming Xu
The growth of corticospinal tract (CST) axons was studied quantitatively at the 7th cervical (C7) and the 4th lumbar (L4) spinal segments in the balb/cByJ mice at the ages of postnatal day (P) 0, 2, 4, 6, 8, 10, 14, and 28. The cross-sectional area of the CST increased progressively with time. Unmyelinated axons, the most prominent CST element during early development, reached maximum at C7 and L4 on P14. Two phases of increase in the number of unmyelinated axons were observed at C7, while only one surge of axonal outgrowth was found at the L4 level. Pro-myelinated axons, defined as axons surrounded by only one layer of oligodendrocytic process, were first seen at P2 and P4 in the C7 and the L4 level, respectively, followed by a dramatic increase in the number of myelinated axons from P14 onwards at both spinal levels. Myelination of the CST axons occurred topographically in a dorsal-to-ventral pattern. The number of growth cones increased rapidly at the C7 level to reach its maximum at P4, while those at L4 increased steadily to the peak at P10. Growth cones with synapse-like junctions were occasionally observed in the growing CST. Degenerating axons and growth cones partly accounted for the massive axon loss at both spinal segments during CST development. Overall, the mouse CST elements changed dynamically in numbers during postnatal development, suggesting a vigorous growing and pruning activity in the tract. The mouse CST also showed a similar growth pattern to that of the rat CST.
Journal of Neuroscience Research | 2005
Jung Yu C. Hsu; Xiao Ming Xu
We previously demonstrated that transplantation of Schwann cell‐seeded channels promoted the regrowth of injured axons in the adult spinal cord. It is not clear, however, whether injured axons recapitulate the developmental scenarios to accomplish regeneration. In the present study, we investigated the early events associated with axonal regrowth after spinal cord hemisection at the eighth thoracic level and implantation of a Schwann cell‐seeded minichannel in adult rats. Animals were sacrificed at postoperative days (PO) 2, 4, 7, and 14. Anterograde tracing with fluoro‐ruby showed that regenerating axons grew into the graft prior to PO2 and reached the distal end of the channel at PO7. These axons expressed both embryonic neural cell adhesion molecule (E‐NCAM) and growth associated protein‐43 (GAP‐43). Although the expression of E‐NCAM decreased by PO7, that of GAP‐43 remained high throughout the first 2 weeks after implantation. A close relation of vimentin‐positive astroglia to the growing axons in the host tissue suggested a contact‐mediated role of these cells in axon guidance. Aggregation of glial fibrillary acidic protein (GFAP)‐positive astrocytes together with the increased expression of chondroitin sulfate proteoglycans (CSPGs) starting at PO7 appeared to inhibit axonal growth at the host–graft interface. Thus, adult regenerating axons and astroglia do express developmentally related molecules that may facilitate axonal growth into a permissive graft at the early phase of injury and regeneration. These results suggest that molecules and astroglia essential to development are both important in influencing axonal regrowth in the adult spinal cord.
Journal of Neuroscience Research | 2005
Jung Yu C. Hsu; Stuart A. Stein; Xiao Ming Xu
To understand better the role of growth‐promoting and ‐inhibiting molecules in the development of the corticospinal tract (CST), temporospatial expression of embryonic neural cell adhesion molecule (E‐NCAM), growth‐associated protein‐43 (GAP‐43), and chondroitin sulfate proteoglycan (CSPG) was studied in developing rats. Transverse sections of the seventh cervical (C7), seventh thoracic (T7), and fourth lumbar (L4) segments were examined at postnatal days (P) 2, 6, 10, 14, and 28. The highest E‐NCAM immunoreactivity appeared at the C7 level on P2 and shifted caudally to the T7 on P6 and L4 on P10, which correlated closely with the time course of CST development. The peak expression of GAP‐43 emerged at C7 on P2 and shifted to the T7 and L4 levels at a relatively lagging pace compared with that of E‐NCAM. Conversely, a transient reduction in CSPG immunoreactivity was found within the CST at the C7 level on P2, T7 level on P6, and L4 level on P10, corresponding well with the arrival of CST‐leading axons at these levels. Interestingly, higher levels of CSPG were found to surround the growing CST, suggesting a repulsive environment that channels the growth of CST. Moreover, a transition from immature to mature astrocytes in a rostrocaudal direction during CST development was evidenced by anti‐vimentin and anti‐glial fibrillary acidic protein (GFAP) immunostaining, suggesting a guidance role of immature astroglia in axonal outgrowth. Our study thus demonstrated dynamic changes of multiple growth‐related molecules and astroglial environment that contribute to postnatal development of the CST.
Spine | 2012
Jung-Shun Lee; Cheng-Chang Yang; Yu-Min Kuo; Chun I. Sze; Jung Yu C. Hsu; Yi-Hung Huang; Shun Fen Tzeng; Ching-Lin Tsai; Hsing-Hong Chen; I-Ming Jou
Study Design. We used a severe contusive spinal cord injury (SCI) model and electrophysiologic, motor functional, immunohistochemical, and electron microscopic examinations to analyze the neuroprotective effects of delayed granulocyte colony-stimulating factor (G-CSF) treatment. Objective. To determine the neuroprotective effects of delayed G-CSF treatment using multimodality evaluations after severe contusive SCI in rats. Summary of Background Data. Despite some reports that G-CSF treatment in the acute stage of different central nervous system injury models was neuroprotective, it has not been determined whether delayed G-CSF treatment can promote neural recovery in severe contusive SCI. Methods. Rats with severe contusive SCI were divided into 2 groups: G-CSF group rats were given serial subcutaneous injections of G-CSF, and control group rats (controls) were given only saline injections on postcontusion days 9 to 13. Using the Basso-Beattie-Bresnahan scale and cortical somatosensory evoked potentials, we recorded functional evaluations weekly. The spinal cords were harvested for protein and immunohistochemical analysis, and for electron microscopy examination. Results. The preserved spinal cord area was larger in G-CSF group rats than in control group rats. Both sensory and motor functions improved after G-CSF treatment. Detachment and disruption of the myelin sheets in the myelinated axons were significantly decreased, and axons sprouted and regenerated. There were fewer microglia and macrophages in the G-CSF group than in the control group. The levels of brain-derived neurotrophic factor were comparable between the 2 groups. Conclusion. Delayed G-CSF treatment at the subacute stage of severe contusive SCI promoted spinal cord preservation and improved functional outcomes. The mechanism of G-CSFs protection may be related in part to attenuating the infiltration of microglia and macrophages.
Experimental Neurology | 2006
Alpa Trivedi; Takuji Igarashi; Nathalie A. Compagnone; Xiaoqing Fan; Jung Yu C. Hsu; Deborah E. Hall; Constance M. John; Linda J. Noble-Haeusslein
Cell-based gene delivery for gene therapy offers the advantages of long-term stable expression of proteins without the safety concerns associated with viral vectors. However, issues of immune rejection prevent the widespread use of allogeneic cell implants. In this study, we determine if Sertoli cells, known for their immune privileged status, are suitable vehicles for allogeneic cell-based gene delivery into the injured spinal cord. As proof of concept, Sertoli cells were modified with recombinant adenovirus expressing enhanced green fluorescent protein (eGFP) or a human trophic factor, neurotrophin-3 (hNT-3), and eGFP. Genetically modified Sertoli cells retained their immunosuppressive ability in vitro, based upon lymphocyte proliferation assays, and were capable of generating biologically relevant levels of NT-3. Similarly, modified, allogeneic cells, implanted into the acutely injured spinal cord, reduced the early inflammatory response while producing significant levels of hNT-3 for at least 3 days after grafting. Moreover, these cells survived for at least 42 days after implantation in the injured cord. Together, these results demonstrate that Sertoli cells function in immunomodulation, can be engineered to produce bioactive molecules, and show long-term survival after implantation into the hostile environment of the acutely injured spinal cord. Such long-term survival represents an important first step toward developing an optimal cell-based delivery system that generates sustained expression of a therapeutic molecule.
Frontiers in Molecular Neuroscience | 2017
Jung Yu C. Hsu; Yu Ling Jhang; Pei Hsun Cheng; Yu Fan Chang; Su Han Mao; Han In Yang; Chia Wei Lin; Chuan-Mu Chen; Shang Hsun Yang
Spinocerebellar ataxia type 3 (SCA3), known as Machado-Joseph disease, is an autosomal dominant disease caused by an abnormal expansion of polyglutamine in ATXN3 gene, leading to neurodegeneration in SCA3 patients. Similar to other neurodegenerative diseases, the dysfunction of mitochondria is observed to cause neuronal death in SCA3 patients. Based on previous studies, proteolytic cleavage of mutant ATXN3 is found to produce truncated C-terminal fragments in SCA3 models. However, whether these truncated mutant fragments disturb mitochondrial functions and result in pathological death is still unclear. Here, we used neuroblastoma cell and transgenic mouse models to examine the effects of truncated mutant ATXN3 on mitochondria functions. In different models, we observed truncated mutant ATXN3 accelerated the formation of aggregates, which translocated into the nucleus to form intranuclear aggregates. In addition, truncated mutant ATXN3 caused more mitochondrial fission, and decreased the expression of mitochondrial fusion markers, including Mfn-1 and Mfn-2. Furthermore, truncated mutant ATXN3 decreased the mitochondrial membrane potential, increased reactive oxygen species and finally increased cell death rate. In transgenic mouse models, truncated mutant ATXN3 also led to more mitochondrial dysfunction, neurodegeneration and cell death in the cerebellums. This study supports the toxic fragment hypothesis in SCA3, and also provides evidence that truncated mutant ATXN3 is severer than full-length mutant one in vitro and in vivo.