Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jungmok Seo is active.

Publication


Featured researches published by Jungmok Seo.


Advanced Materials | 2015

Conductive Fiber‐Based Ultrasensitive Textile Pressure Sensor for Wearable Electronics

Jaehong Lee; Hyukho Kwon; Jungmok Seo; Sera Shin; Ja Hoon Koo; Changhyun Pang; Seungbae Son; Jae Hyung Kim; Yong Hoon Jang; Dae-Eun Kim; Taeyoon Lee

A flexible and sensitive textile-based pressure sensor is developed using highly conductive fibers coated with dielectric rubber materials. The pressure sensor exhibits superior sensitivity, very fast response time, and high stability, compared with previous textile-based pressure sensors. By using a weaving method, the pressure sensor can be applied to make smart gloves and clothes that can control machines wirelessly as human-machine interfaces.


Polymer | 1998

Water sorption and diffusion behaviours in thin films of photosensitive polyimides

Haksoo Han; Jungmok Seo; M. Ree; S.M. Pyo; Carl C. Gryte

Abstract Several photosensitive polyimide (PSPI) precursors were synthesised by the acid/base complexations of conventional poly(amic acid) precursors with photochemically cross-linkable 2-(dimethylamino)ethyl methacrylate. PSPIs in films were prepared from the photosensitive precursors by thermal imidisation, whereas the corresponding PIs in films were prepared from the conventional poly(amic acid)s: rod-like poly(p-phenylene pyromellitimide) (PMDA-PDA), rigid (poly(p-phenylene biphenyltetracarboximide) (BPDA-PDA), semi-flexible poly(4,4′-oxydiphenylene biphenyltetracarboximide) (BPDA-ODA), semi-flexible poly(4,4′-oxydiphenylene pyromellit-imide) (PMDA-ODA), and flexible poly(4,4′-oxydiphenylene benzophenonetetracarboximide) (BTDA-ODA). Water sorption and diffusion behaviours in the PSPIs were gravimetrically measured at 25°C in 100% relative humidity and compared with those of the corresponding PIs. For the PSPIs as well as the PIs, the water sorption and diffusion behaviours were nearly Fickian, regardless of the backbone chemistry. However, those were strongly dependent upon the polyimide backbone chemistry and precursor origin. In addition, those in polyimides were affected by the bulky photosenistive groups, even though they were temporarily linked to the precursor polymers and then debonded from the backbones and ultimately outgassed during the thermal imidisation process. For PMDA-PDA, BPDA-PDA and BPDA-ODA, the PSPIs absorbed water more quickly than the corresponding PIs, whereas for PMDA-ODA and BTDA-ODA, the PSPIs absorbed water less quickly than the corresponding PIs. In contrast to the water diffusion, all the PSPIs absorbed slightly more or a great deal more water than the corresponding PIs, depending on the backbone chemistry. All the measured water sorption and diffusion behaviours in the PSPIs were understood by considering changes in the morphological structure (namely, chain order and orientation), voids, and residues possibly induced by the bulky photosensitive groups, in addition to the Tg as well as the chemical affinity to water.


ACS Applied Materials & Interfaces | 2015

A highly sensitive hydrogen sensor with gas selectivity using a PMMA membrane-coated Pd nanoparticle/single-layer graphene hybrid.

Juree Hong; Sanggeun Lee; Jungmok Seo; Soonjae Pyo; Jongbaeg Kim; Taeyoon Lee

A polymer membrane-coated palladium (Pd) nanoparticle (NP)/single-layer graphene (SLG) hybrid sensor was fabricated for highly sensitive hydrogen gas (H2) sensing with gas selectivity. Pd NPs were deposited on SLG via the galvanic displacement reaction between graphene-buffered copper (Cu) and Pd ion. During the galvanic displacement reaction, graphene was used as a buffer layer, which transports electrons from Cu for Pd to nucleate on the SLG surface. The deposited Pd NPs on the SLG surface were well-distributed with high uniformity and low defects. The Pd NP/SLG hybrid was then coated with polymer membrane layer for the selective filtration of H2. Because of the selective H2 filtration effect of the polymer membrane layer, the sensor had no responses to methane, carbon monoxide, or nitrogen dioxide gas. On the contrary, the PMMA/Pd NP/SLG hybrid sensor exhibited a good response to exposure to 2% H2: on average, 66.37% response within 1.81 min and recovery within 5.52 min. In addition, reliable and repeatable sensing behaviors were obtained when the sensor was exposed to different H2 concentrations ranging from 0.025 to 2%.


ACS Applied Materials & Interfaces | 2011

Guided Transport of Water Droplets on Superhydrophobic–Hydrophilic Patterned Si Nanowires

Jungmok Seo; Soonil Lee; Jaehong Lee; Taeyoon Lee

We present a facile method to fabricate hydrophilic patterns in superhydrophobic Si nanowire (NW) arrays for guiding water droplets. The superhydrophobic Si NW arrays were obtained by simple dip-coating of dodecyltrichlorosilane (DTS). The water contact angles (CAs) of DTS-coated Si NW arrays drastically increased and saturated at the superhydrophobic regime (water CA ≥ 150°) as the lengths of NWs increased. The demonstrated superhydrophobic surfaces show an extreme water repellent property and small CA hysteresis of less than 7°, which enable the water droplets to easily roll off. The wettability of the DTS-coated Si NW arrays can be converted from superhydrophobic to hydrophilic via UV-enhanced photodecomposition of the DTS, and such wettability conversion was reproducible on the same surfaces by repeating the DTS coating and photodecomposition processes. The resulting water guiding tracks were successfully demonstrated via selective patterning of the hydrophilic region on superhydrophobic Si NW arrays, which could enable water droplets to move along defined trajectories.


Advanced Materials | 2014

Switchable Water‐Adhesive, Superhydrophobic Palladium‐Layered Silicon Nanowires Potentiate the Angiogenic Efficacy of Human Stem Cell Spheroids

Jungmok Seo; Jung Seung Lee; Kihong Lee; Dayeong Kim; Kisuk Yang; Sera Shin; Chandreswar Mahata; Hwae Bong Jung; Wooyoung Lee; Seung Woo Cho; Taeyoon Lee

A switchable water-adhesive, super-hydrophobic nanowire surface is developed for the formation of functional stem cell spheroids. The sizes of hADSC spheroids are readily controllable on the surface. Our surface increases cell-cell and cell-matrix interaction, which improves viability and paracrine secretion of the spheroids. Accordingly, the hADSC spheroids produced on the surface exhibit significantly enhanced angiogenic efficacy.


Advanced Materials | 2013

Gas-Driven Ultrafast Reversible Switching of Super-hydrophobic Adhesion on Palladium-Coated Silicon Nanowires

Jungmok Seo; Soonil Lee; Heetak Han; Hwae Bong Jung; Juree Hong; Giyoung Song; Suk Man Cho; Cheolmin Park; Wooyoung Lee; Taeyoon Lee

A gas-driven ultrafast adhesion switching of water droplets on palladium-coated Si nanowire arrays is demonstrated. By regulating the gas-ambient between the atmosphere and H2 , the super-hydrophobic adhesion is repeatedly switched between water-repellent and water-adhesive. The capability of modulating the super-hydrophobic adhesion on a super-hydrophobic surface with a non-contact mode could be applicable to novel functional lab-on-a-chip platforms.


ACS Applied Materials & Interfaces | 2014

Capillary force-induced glue-free printing of Ag nanoparticle arrays for highly sensitive SERS substrates.

Jaehong Lee; Jungmok Seo; Dayeong Kim; Sera Shin; Sanggeun Lee; Chandreswar Mahata; Hyo Sung Lee; Byung Wook Min; Taeyoon Lee

The fabrication of well-ordered metal nanoparticle structures onto a desired substrate can be effectively applied to several applications. In this work, well-ordered Ag nanoparticle line arrays were printed on the desired substrate without the use of glue materials. The success of the method relies on the assembly of Ag nanoparticles on the anisotropic buckling templates and a special transfer process where a small amount of water rather than glue materials is employed. The anisotropic buckling templates can be made to have various wavelengths by changing the degree of prestrain in the fabrication step. Ag nanoparticles assembled in the trough of the templates via dip coating were successfully transferred to a flat substrate which has hydrophilic surface due to capillary forces of water. The widths of the fabricated Ag nanoparticle line arrays were modulated according to the wavelengths of the templates. As a potential application, the Ag nanoparticle line arrays were used as SERS substrates for various probing molecules, and an excellent surface-enhanced Raman spectroscopy (SERS) performance was achieved with a detection limit of 10(-12) M for Rhodamine 6G.


Scientific Reports | 2015

Path-programmable water droplet manipulations on an adhesion controlled superhydrophobic surface.

Jungmok Seo; Seoung Ki Lee; Jaehong Lee; Jung Seung Lee; Hyukho Kwon; Seung Woo Cho; Jong Hyun Ahn; Taeyoon Lee

Here, we developed a novel and facile method to control the local water adhesion force of a thin and stretchable superhydrophobic polydimethylsiloxane (PDMS) substrate with micro-pillar arrays that allows the individual manipulation of droplet motions including moving, merging and mixing. When a vacuum pressure was applied below the PDMS substrate, a local dimple structure was formed and the water adhesion force of structure was significantly changed owing to the dynamically varied pillar density. With the help of the lowered water adhesion force and the slope angle of the formed dimple structure, the motion of individual water droplets could be precisely controlled, which facilitated the creation of a droplet-based microfluidic platform capable of a programmable manipulation of droplets. We showed that the platform could be used in newer and emerging microfluidic operations such as surface-enhanced Raman spectroscopy with extremely high sensing capability (10−15 M) and in vitro small interfering RNA transfection with enhanced transfection efficiency of ~80%.


ACS Nano | 2013

Extremely Bright Full Color Alternating Current Electroluminescence of Solution-Blended Fluorescent Polymers with Self-Assembled Block Copolymer Micelles

Sung Hwan Cho; Seong Soon Jo; Ihn Hwang; Jinwoo Sung; Jungmok Seo; Seok Jung; Insung Bae; Jae Ryung Choi; Himchan Cho; Taeyoon Lee; Jin Kyun Lee; Tae-Woo Lee; Cheol-Min Park

Electroluminescent (EL) devices operating at alternating current (AC) electricity have been of great interest due to not only their unique light emitting mechanism of carrier generation and recombination but also their great potential for applications in displays, sensors, and lighting. Despite great success of AC-EL devices, most device properties are far from real implementation. In particular, the current state-of-the art brightness of the solution-processed AC-EL devices is a few hundred candela per square meter (cd m(-2)) and most of the works have been devoted to red and white emission. In this manuscript, we report extremely bright full color polymer AC-EL devices with brightness of approximately 2300, 6000, and 5000 cd m(-2) for blue (B), green (G), and red (R) emission, respectively. The high brightness of blue emission was attributed to individually networked multiwalled carbon nanotubes (MWNTs) for the facile carrier injection as well as self-assembled block copolymer micelles for suppression of interchain nonradiative energy quenching. In addition, effective FRET from a solution-blended thin film of B-G and B-G-R fluorescent polymers led to very bright green and red EL under AC voltage, respectively. The solution-processed AC-EL device also worked properly with vacuum-free Ag paste on a mechanically flexible polymer substrate. Finally, we successfully demonstrated the long-term operation reliability of our AC-EL device for over 15 h.


Scientific Reports | 2015

Efficient Direct Reduction of Graphene Oxide by Silicon Substrate

Su Chan Lee; Surajit Some; Sung Wook Kim; Sun Jun Kim; Jungmok Seo; Jooho Lee; Taeyoon Lee; Jong Hyun Ahn; Heon-Jin Choi; Seong Chan Jun

Graphene has been studied for various applications due to its excellent properties. Graphene film fabrication from solutions of graphene oxide (GO) have attracted considerable attention because these procedures are suitable for mass production. GO, however, is an insulator, and therefore a reduction process is required to make the GO film conductive. These reduction procedures require chemical reducing agents or high temperature annealing. Herein, we report a novel direct and simple reduction procedure of GO by silicon, which is the most widely used material in the electronics industry. In this study, we also used silicon nanosheets (SiNSs) as reducing agents for GO. The reducing effect of silicon was confirmed by various characterization methods. Furthermore, the silicon wafer was also used as a reducing template to create a reduced GO (rGO) film on a silicon substrate. By this process, a pure rGO film can be formed without the impurities that normally come from chemical reducing agents. This is an easy and environmentally friendly method to prepare large scale graphene films on Si substrates.

Collaboration


Dive into the Jungmok Seo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge