Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Junichi Sugihara is active.

Publication


Featured researches published by Junichi Sugihara.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Probing of the rates of alternating access in LacY with Trp fluorescence

Irina Smirnova; Vladimir N. Kasho; Junichi Sugihara; H. Ronald Kaback

Sugar/H+ symport by lactose permease (LacY) utilizes an alternating access mechanism in which sugar and H+ binding sites in the middle of the molecule are alternatively exposed to either side of the membrane by sequential opening and closing of inward- and outward-facing hydrophilic cavities. Here, we introduce Trp residues on either side of LacY where they are predicted to be in close proximity to side chains of natural Trp quenchers in either the inward- or outward-facing conformers. In the inward-facing conformer, LacY is tightly packed on the periplasmic side, and Trp residues placed at positions 245 (helix VII) or 378 (helix XII) are in close contact with His-35 (helix I) or Lys-42 (helix II), respectively. Sugar binding leads to unquenching of Trp fluorescence in both mutants, a finding clearly consistent with opening of the periplasmic cavity. The pH dependence of Trp-245 unquenching exhibits a pKa of 8, typical for a His side chain interacting with an aromatic group. As estimated from stopped-flow studies, the rate of sugar-induced opening is ≈100 s−1. On the cytoplasmic side, Phe-140 (helix V) and Phe-334 (helix X) are located on opposite sides of a wide-open hydrophilic cavity. In precisely the opposite fashion from the periplasmic side, mutant Phe-140→Trp/Phe-334→His exhibits sugar-induced Trp quenching. Again, quenching is pH dependent (pKa = 8), but remarkably, the rate of sugar-induced quenching is only ≈0.4 s−1. The results provide yet another strong, independent line of evidence for the alternating access mechanism and demonstrate that the methodology described provides a sensitive probe to measure rates of conformational change in membrane transport proteins.


Biochemistry | 2009

Residues in the H+ Translocation Site Define the pKa for Sugar Binding to LacY

Irina N. Smirnova; Vladimir N. Kasho; Junichi Sugihara; Jun-Yong Choe; H. Ronald Kaback

A remarkably high pKa of approximately 10.5 has been determined for sugar-binding affinity to the lactose permease of Escherichia coli (LacY), indicating that, under physiological conditions, substrate binds to fully protonated LacY. We have now systematically tested site-directed replacements for the residues involved in sugar binding, as well as H+ translocation and coupling, in order to determine which residues may be responsible for this alkaline pKa. Mutations in the sugar-binding site (Glu126, Trp151, Glu269) markedly decrease affinity for sugar but do not alter the pKa for binding. In contrast, replacements for residues involved in H+ translocation (Arg302, Tyr236, His322, Asp240, Glu325, Lys319) exhibit pKa values for sugar binding that are either shifted toward neutral pH or independent of pH. Values for the apparent dissociation constant for sugar binding (K(d)(app)) increase greatly for all mutants except neutral replacements for Glu325 or Lys319, which are characterized by remarkably high affinity sugar binding (i.e., low K(d)(app)) from pH 5.5 to pH 11. The pH dependence of the on- and off-rate constants for sugar binding measured directly by stopped-flow fluorometry implicates k(off) as a major factor for the affinity change at alkaline pH and confirms the effects of pH on K(d)(app) inferred from steady-state fluorometry. These results indicate that the high pKa for sugar binding by wild-type LacY cannot be ascribed to any single amino acid residue but appears to reside within a complex of residues involved in H+ translocation. There is structural evidence for water bound in this complex, and the water could be the site of protonation responsible for the pH dependence of sugar binding.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Opening the periplasmic cavity in lactose permease is the limiting step for sugar binding

Irina Smirnova; Vladimir N. Kasho; Junichi Sugihara; H. Ronald Kaback

The lactose permease (LacY) catalyzes galactoside/H+ symport via an alternating access mechanism in which sugar- and H+-binding sites in the middle of the molecule are alternatively exposed to either side of the membrane by opening and closing of inward- and outward-facing cavities. The crystal structures of wild-type LacY, as well as accessibility data for the protein in the membrane, provide strong support for a conformation with a tightly closed periplasmic side and an open cytoplasmic side (an inward-facing conformation). In this study, rates of substrate binding were measured by stopped-flow with purified LacY either in detergent or in reconstituted proteoliposomes. Binding rates are compared with rates of sugar-induced opening of the periplasmic pathway obtained by using a recently developed method based on unquenching of Trp fluorescence. A linear dependence of galactoside-binding rates on sugar concentration is observed in detergent, whereas reconstituted LacY binds substrate at a slower rate that is independent of sugar concentration. Rates of opening of the periplasmic cavity with LacY in detergent are independent of substrate concentration and are essentially the same for different galactosidic sugars. The findings demonstrate clearly that reconstituted LacY is oriented physiologically with a closed periplasmic side that limits access of sugar to the binding site. Moreover, opening of the periplasmic cavity is the limiting factor for sugar binding with reconstituted LacY and may be the limiting step in the overall transport reaction.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Role of protons in sugar binding to LacY

Irina Smirnova; Vladimir N. Kasho; Junichi Sugihara; José Luis Vázquez-Ibar; H. Ronald Kaback

WT lactose permease of Escherichia coli (LacY) reconstituted into proteoliposomes loaded with a pH-sensitive fluorophore exhibits robust uphill H+ translocation coupled with downhill lactose transport. However, galactoside binding by mutants defective in lactose-induced H+ translocation is not accompanied by release of an H+ on the interior of the proteoliposomes. Because the pKa value for galactoside binding is ∼10.5, protonation of LacY likely precedes sugar binding at physiological pH. Consistently, purified WT LacY, as well as the mutants, binds substrate at pH 7.5–8.5 in detergent, but no change in ambient pH is observed, demonstrating directly that LacY already is protonated when sugar binds. However, a kinetic isotope effect (KIE) on the rate of binding is observed, indicating that deuterium substitution for protium affects an H+ transfer reaction within LacY that is associated with sugar binding. At neutral pH or pD, both the rate of sugar dissociation (koff) and the forward rate (kon) are slower in D2O than in H2O (KIE is ∼2), and, as a result, no change in affinity (Kd) is observed. Alkaline conditions enhance the effect of D2O on koff, the KIE increases to 3.6–4.0, and affinity for sugar increases compared with H2O. In contrast, LacY mutants that exhibit pH-independent high-affinity binding up to pH 11.0 (e.g., Glu325 → Gln) exhibit the same KIE (1.5–1.8) at neutral or alkaline pH (pD). Proton inventory studies exhibit a linear relationship between koff and D2O concentration at neutral and alkaline pH, indicating that internal transfer of a single H+ is involved in the KIE.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Trp replacements for tightly interacting Gly–Gly pairs in LacY stabilize an outward-facing conformation

Irina Smirnova; Vladimir N. Kasho; Junichi Sugihara; H. Ronald Kaback

Trp replacements for conserved Gly–Gly pairs between the N- and C-terminal six-helix bundles on the periplasmic side of lactose permease (LacY) cause complete loss of transport activity with little or no effect on sugar binding. Moreover, the detergent-solubilized mutants exhibit much greater thermal stability than WT LacY. A Cys replacement for Asn245, which is inaccessible/unreactive in WT LacY, alkylates readily in the Gly→Trp mutants, indicating that the periplasmic cavity is patent. Stopped-flow kinetic measurements of sugar binding with the Gly→Trp mutants in detergent reveal linear dependence of binding rates on sugar concentration, as observed with WT or the C154G mutant of LacY, and are compatible with free access to the sugar-binding site in the middle of the molecule. Remarkably, after reconstitution of the Gly→Trp mutants into proteoliposomes, the concentration dependence of sugar-binding rates increases sharply with even faster rates than measured in detergent. Such behavior is strikingly different from that observed for reconstituted WT LacY, in which sugar-binding rates are independent of sugar concentration because opening of the periplasmic cavity is limiting for sugar binding. The observations clearly indicate that Gly→Trp replacements, which introduce bulky residues into tight Gly–Gly interdomain interactions on the periplasmic side of LacY, prevent closure of the periplasmic cavity and, as a result, shift the distribution of LacY toward an outward-open conformation.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Substrate-induced changes in the structural properties of LacY

Tetiana Serdiuk; M. Gregor Madej; Junichi Sugihara; Shiho Kawamura; Stefania A. Mari; H. Ronald Kaback; Daniel J. Müller

Significance Lactose permease of Escherichia coli (LacY), a model for the major facilitator superfamily, catalyzes galactopyranoside/H+ symport across the membrane by a mechanism in which large conformational changes expose the sugar-binding site in the middle of the molecule alternatively to either side of the membrane (an alternating access mechanism). Despite substantial progress with respect to static X-ray crystal structures of LacY, the dynamics of the transport mechanism are not fully understood. Here we use dynamic single-molecule force spectroscopy to quantify the structural properties that change upon substrate binding. The results reveal very significant changes in conformational, kinetic, energetic, and mechanical properties primarily in the N-terminal 6-helix bundle, while the C-terminal 6-helix bundle remains largely unaffected. The lactose permease (LacY) of Escherichia coli, a paradigm for the major facilitator superfamily, catalyzes the coupled stoichiometric translocation of a galactopyranoside and an H+ across the cytoplasmic membrane. To catalyze transport, LacY undergoes large conformational changes that allow alternating access of sugar- and H+-binding sites to either side of the membrane. Despite strong evidence for an alternating access mechanism, it remains unclear how H+- and sugar-binding trigger the cascade of interactions leading to alternating conformational states. Here we used dynamic single-molecule force spectroscopy to investigate how substrate binding induces this phenomenon. Galactoside binding strongly modifies kinetic, energetic, and mechanical properties of the N-terminal 6-helix bundle of LacY, whereas the C-terminal 6-helix bundle remains largely unaffected. Within the N-terminal 6-helix bundle, the properties of helix V, which contains residues critical for sugar binding, change most radically. Particularly, secondary structures forming the N-terminal domain exhibit mechanically brittle properties in the unbound state, but highly flexible conformations in the substrate-bound state with significantly increased lifetimes and energetic stability. Thus, sugar binding tunes the properties of the N-terminal domain to initiate galactoside/H+ symport. In contrast to wild-type LacY, the properties of the conformationally restricted mutant Cys154➝Gly do not change upon sugar binding. It is also observed that the single mutation of Cys154➝Gly alters intramolecular interactions so that individual transmembrane helices manifest different properties. The results support a working model of LacY in which substrate binding induces alternating conformational states and provides insight into their specific kinetic, energetic, and mechanical properties.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Dynamics of the l-fucose/H+ symporter revealed by fluorescence spectroscopy

Junichi Sugihara; Linfeng Sun; Nieng Yan; H. Ronald Kaback

FucP of Escherichia coli catalyzes l-fucose/H+ symport, and a crystal structure in an outward-facing conformation has been reported. However, nothing is known about FucP conformational dynamics. Here, we show that addition of l-fucose to purified FucP in detergent induces ∼20% quenching of Trp fluorescence in a concentration-dependent manner without a shift in λmax. Quenching is essentially abolished when both Trp38 and Trp278, which are positioned on opposing faces of the outward-facing cavity walls, are replaced with Tyr or Phe, and reduced quenching is observed when either Trp is mutated. Therefore, both Trp residues are involved in the phenomenon. Furthermore, replacement of either Trp38 or Trp278, predominantly Trp38, causes decreased quenching, decreased apparent affinity for l-fucose, and significant inhibition of active l-fucose transport, indicating that the two residues are likely involved directly in sugar binding. It is proposed that sugar binding induces a conformational change in which the outward-facing cavity in FucP closes, thereby bringing Trp38 and Trp278 into close proximity around the bound sugar to form an “occluded” intermediate. The location of these two Trp residues provides a unique method for analyzing structural dynamics in FucP.


Structure | 2015

Observing a Lipid-Dependent Alteration in Single Lactose Permeases

Tetiana Serdiuk; Junichi Sugihara; Stefania A. Mari; H. Ronald Kaback; Daniel J. Müller

Lipids of the Escherichia coli membrane are mainly composed of 70%-80% phosphatidylethanolamine (PE) and 20%-25% phosphatidylglycerol (PG). Biochemical studies indicate that the depletion of PE causes inversion of the N-terminal helix bundle of the lactose permease (LacY), and helix VII becomes extramembranous. Here we study this phenomenon using single-molecule force spectroscopy, which is sensitive to the structure of membrane proteins. In PE and PG at a ratio of 3:1, ∼95% of the LacY molecules adopt a native structure. However, when PE is omitted and the membrane contains PG only, LacY almost equally populates a native and a perturbed conformation. The most drastic changes occur at helices VI and VII and the intervening loop. Since helix VII contains Asp237 and Asp240, zwitterionic PE may suppress electrostatic repulsion between LacY and PG in the PE:PG environment. Thus, PE promotes a native fold and prevents LacY from populating a functionally defective, nonnative conformation.


Nature Chemical Biology | 2016

YidC assists the stepwise and stochastic folding of membrane proteins

Tetiana Serdiuk; Dhandayuthapani Balasubramaniam; Junichi Sugihara; Stefania A. Mari; H. Ronald Kaback; Daniel J. Müller

How chaperones, insertases and translocases facilitate insertion and folding of complex cytoplasmic proteins into cellular membranes is not fully understood. Here, we utilize single-molecule force spectroscopy to observe YidC, a transmembrane chaperone/insertase, sculpting the folding trajectory of the polytopic α-helical membrane protein lactose permease (LacY). In the absence of YidC, unfolded LacY inserts individual structural segments into the membrane; however, misfolding dominates the process so that folding cannot be completed. YidC prevents LacY from misfolding by stabilizing the unfolded state from which LacY inserts structural segments stepwise into the membrane until folding is completed. During stepwise insertion, YidC and membrane together stabilize the transient folds. Remarkably, the order of insertion of structural segments is stochastic, thereby indicating that LacY can fold along variable pathways towards the native structure. Since YidC is essential in membrane protein biogenesis and LacY a paradigm for the major facilitator superfamily, our observations have general relevance.


Biochemistry | 2011

Sugar Recognition by CscB and LacY

Junichi Sugihara; Irina Smirnova; Vladimir N. Kasho; H. Ronald Kaback

The sucrose permease (CscB) and lactose permease (LacY) of Escherichia coli belong to the oligosaccharide/H(+) symporter subfamily of the major facilitator superfamily, and both catalyze sugar/H(+) symport across the cytoplasmic membrane. Thus far, there is no common substrate for the two permeases; CscB transports sucrose, and LacY is highly specific for galactopyranosides. Determinants for CscB sugar specificity are unclear, but the structural organization of key residues involved in sugar binding appears to be similar in CscB and LacY. In this study, several sugars containing galactopyranosyl, glucopyranosyl, or fructofuranosyl moieties were tested for transport with cells overexpressing either CscB or LacY. CscB recognizes not only sucrose but also fructose and lactulose, but glucopyranosides are not transported and do not inhibit sucrose transport. The findings indicate that CscB exhibits practically no specificity with respect to the glucopyranosyl moiety of sucrose. Inhibition of sucrose transport by CscB tested with various fructofuranosides suggests that the C(3)-OH group of the fructofuranosyl ring may be important for recognition by CscB. Lactulose is readily transported by LacY, where specificity is directed toward the galactopyranosyl ring, and the affinity of LacY for lactulose is similar to that observed for lactose. The studies demonstrate that the substrate specificity of CscB is directed toward the fructofuranosyl moiety of the substrate, while the specificity of LacY is directed toward the galactopyranosyl moiety.

Collaboration


Dive into the Junichi Sugihara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Petra Hellwig

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

José Luis Vázquez-Ibar

Howard Hughes Medical Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge