Junliang Chang
Jilin University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Junliang Chang.
Journal of General Virology | 2014
Jingliang Li; Junliang Chang; Xin Liu; Jiaxin Yang; Haoran Guo; Wei Wei; Wenyan Zhang; Xiao Fang Yu
Circulating coxsackievirus A16 (CA16) is a major cause of hand, foot and mouth disease (HFMD) in South-east Asia. At present, there is no vaccine against CA16. Pathogenic animal models that are sensitive to diverse circulating CA16 viruses would be desirable for vaccine development and evaluation. In this study, we isolated and characterized several circulating CA16 viruses from recent HFMD patients. These CA16 viruses currently circulating in humans were highly pathogenic in a newly developed neonatal mouse model; we also observed and analysed the pathogenesis of representative circulating recombinant form CA16 viruses. An inactivated CA16 vaccine candidate, formulated with alum adjuvant and containing submicrogram quantities of viral proteins, protected neonatal mice born to immunized female mice from lethal-dose challenge with a series of CA16 viruses. Further analysis of humoral immunity showed that antibody elicited from both the immunized dams and their pups could neutralize various lethal viruses by a cytopathic effect in vitro. Moreover, viral titres and loads in the tissues of challenged pups in the vaccine group were far lower than those in the control group, and some were undetectable. This lethal-challenge model using pathogenic CA16 viruses and the vaccine candidates that mediated protection in this model could be useful tools for the future development and evaluation of CA16 vaccines.
Cell Host & Microbe | 2016
Wei Wei; Haoran Guo; Junliang Chang; Yingzi Yu; Guanchen Liu; Nannan Zhang; Stephen H. Willard; Shu Zheng; Xiao Fang Yu
Enterovirus D68 (EV-D68) is a member of the Picornaviridae family. Although EV-D68-associated infection was once considered rare, it has been increasing in recent years. EV-D68 infection is most frequently associated with respiratory illness. However, it has also been implicated in a polio-like neurological disorder, acute flaccid myelitis. Although sialic acid has been implicated in EV-D68 entry, the existence of a protein receptor has yet to be clarified. Here we identify neuron-specific intercellular adhesion molecule 5 (ICAM-5/telencephalin) as a cellular receptor for sialic acid-dependent and -independent EV-D68 viruses. EV-D68 bound specifically and efficiently to ICAM-5, and replication of EV-D68 in diverse cell types was inhibited by soluble ICAM-5 fragments. ICAM-5 silencing attenuated EV-D68 replication in permissive cells, and ICAM-5 expression in non-permissive cells allowed EV-D68 replication. The discovery of a neuron-specific adhesion molecule as an EV-D68 receptor has important implications for EV-D68 pathogenesis and may facilitate the development of novel intervention strategies.
BMC Microbiology | 2015
Junliang Chang; Jingliang Li; Xin Liu; Guanchen Liu; Jiaxin Yang; Wei Wei; Wenyan Zhang; Xiao Fang Yu
BackgroundCirculating enterovirus 71 (EV-A71)-associated hand, foot, and mouth disease is on the rise in the Asian-Pacific region. Although animal models have been developed using mouse-adapted EV-A71 strains, mouse models using primary EV-A71 isolates are scarce. Lethal animal models with circulating EV-A71 infection would contribute to studies of pathogenesis as well as vaccine development and evaluation.ResultsIn this study, we established a lethal mouse model using primary EV-A71 isolates from patients infected with serotypes that are currently circulating in humans. We also characterized the dose-dependent virulence and pathologic changes of circulating EV-A71 in this mouse model. Most importantly, we have established this mouse model as a suitable system for EV-A71 vaccine evaluation. An inactivated EV-A71 vaccine candidate offered complete protection from death induced by various circulating EV-A71 viruses to neonatal mice that were born to immunized female mice. The sera of the immunized dams and their pups showed higher neutralization titers against multiple circulating EV-A71 viruses.ConclusionsThus, our newly established animal model using primary EV-A71 isolates is helpful for future studies on viral pathogenesis and vaccine and drug development.
Journal of Virology | 2017
Yajuan Rui; Jiaming Su; Hong Wang; Junliang Chang; Shaohua Wang; Wenwen Zheng; Yong Cai; Wei Wei; James Gordy; Richard B. Markham; Wei Kong; Wenyan Zhang; Xiao Fang Yu
ABSTRACT Coxsackievirus A16 (CV-A16), CV-A6, and enterovirus D68 (EV-D68) belong to the Picornaviridae family and are major causes of hand, foot, and mouth disease (HFMD) and pediatric respiratory disease worldwide. The biological characteristics of these viruses, especially their interplay with the host innate immune system, have not been well investigated. In this study, we discovered that the 3Cpro proteins from CV-A16, CV-A6, and EV-D68 bind melanoma differentiation-associated gene 5 (MDA5) and inhibit its interaction with MAVS. Consequently, MDA5-triggered type I interferon (IFN) signaling in the retinoic acid-inducible gene I-like receptor (RLR) pathway was blocked by the CV-A16, CV-A6, and EV-D68 3Cpro proteins. Furthermore, the CV-A16, CV-A6, and EV-D68 3Cpro proteins all cleave transforming growth factor β-activated kinase 1 (TAK1), resulting in the inhibition of NF-κB activation, a host response also critical for Toll-like receptor (TLR)-mediated signaling. Thus, our data demonstrate that circulating HFMD-associated CV-A16 and CV-A6, as well as severe respiratory disease-associated EV-D68, have developed novel mechanisms to subvert host innate immune responses by targeting key factors in the RLR and TLR pathways. Blocking the ability of 3Cpro proteins from diverse enteroviruses and coxsackieviruses to interfere with type I IFN induction should restore IFN antiviral function, offering a potential novel antiviral strategy. IMPORTANCE CV-A16, CV-A6, and EV-D68 are emerging pathogens associated with hand, foot, and mouth disease and pediatric respiratory disease worldwide. The pathogenic mechanisms of these viruses are largely unknown. Here we demonstrate that the CV-A16, CV-A6, and EV-D68 3Cpro proteins block MDA5-triggered type I IFN induction. The 3Cpro proteins of these viruses bind MDA5 and inhibit its interaction with MAVS. In addition, the CV-A16, CV-A6, and EV-D68 3Cpro proteins cleave TAK1 to inhibit the NF-κB response. Thus, our data demonstrate that circulating HFMD-associated CV-A16 and CV-A6, as well as severe respiratory disease-associated EV-D68, have developed a mechanism to subvert host innate immune responses by simultaneously targeting key factors in the RLR and TLR pathways. These findings indicate the potential merit of targeting the CV-A16, CV-A6, and EV-D68 3Cpro proteins as an antiviral strategy.
Viruses | 2015
Jingliang Li; Guanchen Liu; Xin Liu; Jiaxin Yang; Junliang Chang; Wenyan Zhang; Xiao Fang Yu
Coxsackievirus A16 (CA16) and enterovirus 71 (EV71), both of which can cause hand, foot and mouth disease (HFMD), are responsible for large epidemics in Asian and Pacific areas. Although inactivated EV71 vaccines have completed testing in phase III clinical trials in Mainland China, CA16 vaccines are still under development. A Vero cell-based inactivated CA16 vaccine was developed by our group. Screening identified a CA16 vaccine strain (CC024) isolated from HFMD patients, which had broad cross-protective abilities and satisfied all requirements for vaccine production. Identification of the biological characteristics showed that the CA16CC024 strain had the highest titer (107.5 CCID50/mL) in Vero cells, which would benefit the development of an EV71/CA16 divalent vaccine. A potential vaccine manufacturing process was established, including the selection of optimal time for virus harvesting, membrane for diafiltration and concentration, gel-filtration chromatography for the down-stream virus purification and virus inactivation method. Altogether, the analyses suggested that the CC-16, a limiting dilution clone of the CC024 strain, with good genetic stability, high titer and broad-spectrum immunogenicity, would be the best candidate strain for a CA16 inactivated vaccine. Therefore, our study provides valuable information for the development of a Vero cell-based CA16 or EV71-CA16 divalent inactivated vaccine.
Immunologic Research | 2015
Junliang Chang; Jingliang Li; Wei Wei; Xin Liu; Guanchen Liu; Jiaxin Yang; Wenyan Zhang; Xiao Fang Yu
Abstract Circulating enterovirus 71 (EV71)-associated hand, foot, and mouth disease (HFMD) is a major public health problem in the Asian-Pacific region. An EV71 vaccine for HFMD prevention is currently being developed. However, viral determinants that could influence the vaccine’s efficacy have not been well characterized. In this study, we isolated and characterized several EV71 strains that are currently circulating in northern and southern China. We determined that VP1 variation is a major determinant of EV71 immunogenicity. A single amino acid variation in VP1 can lead to significant differences in the breadth and potency of immune responses against primary EV71 isolates as well as the sensitivity of EV71 to heterologous neutralizing antibody responses. We also identified EV71 strains that could induce potent immunogenic and cross-neutralizing antibody responses against diverse EV71 strains. Furthermore, these neutralizing antibodies could protect neonatal mice from lethal dose challenge with various circulating EV71 viruses. Our study provides useful information for EV71 vaccine development and evaluation.
Brazilian Journal of Medical and Biological Research | 2015
L. Huang; Xin Liu; Jingliang Li; Junliang Chang; Guanchen Liu; Xiao Fang Yu; W.Y. Zhang
An enterovirus 71 (EV71) vaccine for the prevention of hand, foot, and mouth disease (HMFD) is available, but it is not known whether the EV71 vaccine cross-protects against Coxsackievirus (CV) infection. Furthermore, although an inactivated circulating CVA16 Changchun 024 (CC024) strain vaccine candidate is effective in newborn mice, the CC024 strain causes severe lesions in muscle and lung tissues. Therefore, an effective CV vaccine with improved pathogenic safety is needed. The aim of this study was to evaluate the in vivo safety and in vitro replication capability of a noncirculating CVA16 SHZH05 strain. The replication capacity of circulating CVA16 strains CC024, CC045, CC090 and CC163 and the noncirculating SHZH05 strain was evaluated by cytopathic effect in different cell lines. The replication capacity and pathogenicity of the CC024 and SHZH05 strains were also evaluated in a neonatal mouse model. Histopathological and viral load analyses demonstrated that the SHZH05 strain had an in vitro replication capacity comparable to the four CC strains. The CC024, but not the SHZH05 strain, became distributed in a variety of tissues and caused severe lesions and mortality in neonatal mice. The differences in replication capacity and in vivo pathogenicity of the CC024 and SHZH05 strains may result from differences in the nucleotide and amino acid sequences of viral functional polyproteins P1, P2 and P3. Our findings suggest that the noncirculating SHZH05 strain may be a safer CV vaccine candidate than the CC024 strain.
Frontiers in Microbiology | 2018
Dongyin Wang; Haoran Guo; Junliang Chang; Dong Wang; Bin Liu; Pujun Gao; Wei Wei
Enterovirus D68 (EV-D68) has emerged as a significant respiratory pathogen that can cause severe respiratory disease and acute neurologic disease. At present, there are no approved antiviral agents or vaccines for EV-D68. In this study, we demonstrate that andrographolide (ADO), an active component of Andrographis paniculata, exerts substantial antiviral activity against EV-D68 infection. ADO treatment dramatically inhibited EV-D68 RNA replication (EC50 = 3.45 μM) and protein synthesis without producing significant cytotoxicity at virucidal concentrations. ADO-treated cells did not show any changes in host immune activation, EV-D68 attachment, or viral 5′ UTR activity. Using a pH-sensitive fluorescent indicator system for endocytosis in living cells, we found that ADO prevented the acidification of endocytic vesicles after receptor-mediated endocytosis. Finally, we showed that ADO inhibited the viral replication of circulating isolated EV-D68 strains. In summary, our results demonstrate that ADO suppresses EV-D68 replication by targeting the maturation of virus-containing endosomes of EV-D68. This mechanism represents a promising strategy for drug development.
Frontiers in Cellular and Infection Microbiology | 2018
Zengyan Wang; Yue Wang; Shaohua Wang; Xiangling Meng; Fengmei Song; Wenbo Huo; Shuxia Zhang; Junliang Chang; Jingliang Li; Baisong Zheng; Yan-Qiu Liu; Yahong Zhang; Wenyan Zhang; Jinghua Yu
Recent epidemiological data indicate that outbreaks of hand, foot, and mouth disease (HFMD), which can be categorized according to its clinical symptoms as typical or atypical, have markedly increased worldwide. A primary causative agent for typical HFMD outbreaks, enterovirus 71 (EV71), has been shown to manipulate the cell cycle in S phase for own replication; however, it is not clear whether coxsackievirus (CVA6), the main agent for atypical HFMD, also regulates the host cell cycle. In this study, we demonstrate for the first time that CVA6 infection arrests the host cell cycle in G0/G1-phase. Furthermore, synchronization in G0/G1 phase, but not S phase or G2/M phase, promotes viral production. To investigate the mechanism of cell cycle arrest induced by CVA6 infection, we analyzed cell cycle progression after cell cycle synchronization at G0/G1 or G2/M. Our results demonstrate that CVA6 infection promotes G0/G1 phase entry from G2/M phase, and inhibits G0/G1 exit into S phase. In line with its role to arrest cells in G0/G1 phase, the expression of cyclinD1, CDK4, cyclinE1, CDK2, cyclinB1, CDK1, P53, P21, and P16 is regulated by CVA6. Finally, the non-structural proteins of CVA6, RNA-dependent RNA polymerase 3D and protease 3C , are demonstrated to be responsible for the G0/G1-phase arrest. These findings suggest that CVA6 infection arrested cell cycle in G0/G1-phase via non-structural proteins 3D and 3C, which may provide favorable environments for virus production.
Cancer Chemotherapy and Pharmacology | 2018
Bo Xu; Yuyou Deng; Ran Bi; Haoran Guo; Chang Shu; Neelam Kumari Shah; Junliang Chang; Guanchen Liu; Yujun Du; Wei Wei; Chunxi Wang
PurposeMLN4924 is a second-generation inhibitor that targets ubiquitin–proteasome system by inhibiting neddylation activation enzyme (NAE), and subsequently blocking the neddylation-dependent activation of Cullin-RING E3 ligases (CRLs), which leads to the accumulation of CRLs substrates and hence, suppressing diverse tumor development. In this study, we investigated the potential application of this first-in-class inhibitor MLN4924 in the treatment of human renal cell carcinoma both in vitro and in vivo.MethodsThe impact of MLN4924 on renal cancer cells was determined by measuring viability (MTS), proliferation cell count test and clonogenic assays, cell cycle progression (flow cytometry with propidium iodide staining), apoptosis (flow cytometry with annexin V-FITC labeling) and DNA damage (immunofluorescent staining). The cell cycle regulatory molecules, apoptosis-related molecules, and cell stress-related proteins were examined by Western blotting. The influence of tumor cell migration was analyzed by wound healing assays. A well-established SCID xenograft mouse model was used to evaluate the effects of MLN4924 on tumor growth in vivo.ResultsThe data showed that MLN4924 induced a dose-dependent cytotoxicity, anti-proliferation, anti-migration, and apoptosis in human renal cancer cells; and caused cell cycle arrested at the G2 phase. In addition, the E2 conjugating enzymes of Neddylation UBE2M played a major role in the proliferation control of renal cancer cells. Finally, we confirmed MLN4924 inhibited tumor growth in a RCC xenograft mouse model with minimal general toxicity.ConclusionWe concluded that MLN4924 induces apoptosis and cell cycle arrest. These findings implied that MLN4924 provides a novel strategy for the treatment of RCC.