Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Junpyo Park is active.

Publication


Featured researches published by Junpyo Park.


Scientific Reports | 2015

Mesoscopic Interactions and Species Coexistence in Evolutionary Game Dynamics of Cyclic Competitions

Hongyan Cheng; Nan Yao; Zi-Gang Huang; Junpyo Park; Younghae Do; Ying Cheng Lai

Evolutionary dynamical models for cyclic competitions of three species (e.g., rock, paper, and scissors, or RPS) provide a paradigm, at the microscopic level of individual interactions, to address many issues in coexistence and biodiversity. Real ecosystems often involve competitions among more than three species. By extending the RPS game model to five (rock-paper-scissors-lizard-Spock, or RPSLS) mobile species, we uncover a fundamental type of mesoscopic interactions among subgroups of species. In particular, competitions at the microscopic level lead to the emergence of various local groups in different regions of the space, each involving three species. It is the interactions among the groups that fundamentally determine how many species can coexist. In fact, as the mobility is increased from zero, two transitions can occur: one from a five- to a three-species coexistence state and another from the latter to a uniform, single-species state. We develop a mean-field theory to show that, in order to understand the first transition, group interactions at the mesoscopic scale must be taken into account. Our findings suggest, more broadly, the importance of mesoscopic interactions in coexistence of great many species.


Chaos | 2013

Persistent coexistence of cyclically competing species in spatially extended ecosystems

Junpyo Park; Younghae Do; Zi-Gang Huang; Ying Cheng Lai

A fundamental result in the evolutionary-game paradigm of cyclic competition in spatially extended ecological systems, as represented by the classic Reichenbach-Mobilia-Frey (RMF) model, is that high mobility tends to hamper or even exclude species coexistence. This result was obtained under the hypothesis that individuals move randomly without taking into account the suitability of their local environment. We incorporate local habitat suitability into the RMF model and investigate its effect on coexistence. In particular, we hypothesize the use of basic instinct of an individual to determine its movement at any time step. That is, an individual is more likely to move when the local habitat becomes hostile and is no longer favorable for survival and growth. We show that, when such local habitat suitability is taken into account, robust coexistence can emerge even in the high-mobility regime where extinction is certain in the RMF model. A surprising finding is that coexistence is accompanied by the occurrence of substantial empty space in the system. Reexamination of the RMF model confirms the necessity and the important role of empty space in coexistence. Our study implies that adaptation/movements according to local habitat suitability are a fundamental factor to promote species coexistence and, consequently, biodiversity.


Numerical Heat Transfer Part A-applications | 2013

Numerical Study of Natural Convection in a Vertical Porous Annulus with an Internal Heat Source: Effect of Discrete Heating

M. Sankar; Junpyo Park; Dongseok Kim; Younghae Do

This article reports a numerical study of natural convection in a vertical annulus filled with a fluid-saturated porous medium, and with internal heat generation subject to a discrete heating from the inner wall. The relative importance of discrete heating on natural convection in the porous annulus is examined via the Brinkman-extended Darcy equation. The inner wall of the annulus has a discrete heat source and the outer wall is isothermally cooled at a lower temperature. The top and bottom walls and the unheated portions of the inner wall are kept adiabatic. The governing equations are numerically solved using an implicit finite difference method. A wide range of numerical simulations is conducted to understand the effects of various parameters like heat source length, heat source location, Darcy number, radius ratio, and Rayleigh numbers due to external and internal heating on the flow and heat transfer. The numerical results reveal that the placement of the heater near the middle portion of the inner wall yields the maximum heat transfer and minimum hot spots rather than placing the heater near the top and bottom portions of the inner wall. The heat transfer increases with an increase in the external Rayleigh number and Darcy number, while it decreases with an increase in the internal Rayleigh number, porosity of the porous medium, and the size of the heater. Further, we found that the size and location of the heater has a profound influence on the heat transfer rate and maximum temperature in the annular cavity.


Numerical Heat Transfer Part A-applications | 2011

Natural Convection in a Vertical Annuli with Discrete Heat Sources

M. Sankar; Junpyo Park; Younghae Do

In this article, we numerically study natural convection heat transfer in a cylindrical annular cavity with discrete heat sources on the inner wall, whereas the outer wall is isothermally cooled at a lower temperature, and the top wall, the bottom wall, and unheated portions of the inner wall are assumed to be thermally insulated. To investigate the effect of discrete heating on the natural convection heat transfer, at most two heating sources located near the top and bottom walls are considered, and the size and location of these discrete heaters are varied in the enclosure. The governing equations are solved numerically by an implicit finite difference method. The effect of heater placements, heater lengths, aspect ratio, radii ratio, and modified Rayleigh number on the flow and heat transfer in the annuli are analyzed. Our numerical results show that when the size of the heater is smaller, the heat transfer rates are higher. We also found that the heat transfer in the annular cavity increases with radii ratio and modified Rayleigh number, and can be enhanced by placing a heater with the smaller length near the bottom surface.


Scientific Reports | 2017

Emergence of unusual coexistence states in cyclic game systems

Junpyo Park; Younghae Do; Bongsoo Jang; Ying Cheng Lai

Evolutionary games of cyclic competitions have been extensively studied to gain insights into one of the most fundamental phenomena in nature: biodiversity that seems to be excluded by the principle of natural selection. The Rock-Paper-Scissors (RPS) game of three species and its extensions [e.g., the Rock-Paper-Scissors-Lizard-Spock (RPSLS) game] are paradigmatic models in this field. In all previous studies, the intrinsic symmetry associated with cyclic competitions imposes a limitation on the resulting coexistence states, leading to only selective types of such states. We investigate the effect of nonuniform intraspecific competitions on coexistence and find that a wider spectrum of coexistence states can emerge and persist. This surprising finding is substantiated using three classes of cyclic game models through stability analysis, Monte Carlo simulations and continuous spatiotemporal dynamical evolution from partial differential equations. Our finding indicates that intraspecific competitions or alternative symmetry-breaking mechanisms can promote biodiversity to a broader extent than previously thought.


Applied Mathematics and Computation | 2018

Balancedness among competitions for biodiversity in the cyclic structured three species system

Junpyo Park

Abstract Balancedness among species interactions may be an important key to understand species biodiversity. Biodiversity among species is usually promoted by competitions which can occur between two different species or among the same species. In this paper, we investigate how symmetry breaking of interspecific competitions can affect biodiversity on cyclic structured three species which may compete with themselves. From theoretical and numerical results of the deterministic system, we found that the symmetry breaking of interspecific competitions on the self-competitive species system can lead the emergence of new survival states in which are stable. Further, we figured out that these diverse survival states can be influenced by the moderate balance between interspecific and intraspecific competitions which is uncovered numerically.


Chaos | 2018

Biodiversity in the cyclic competition system of three species according to the emergence of mutant species

Junpyo Park

Understanding mechanisms which promote or hinder existing ecosystems are important issues in ecological sciences. In addition to fundamental interactions such as competition and migration among native species, existing ecosystems can be easily disturbed by external factors, and the emergence of new species may be an example in such cases. The new species which does not exist in a current ecosystem can be regarded as either alien species entered from outside or mutant species born by mutation in existing normal species. Recently, as existing ecosystems are getting influenced by various physical/chemical external factors, mutation due to anthropogenic and environmental factors can occur more frequently and is thus attracting much attention for the maintenance of ecosystems. In this paper, we consider emergences of mutant species among self-competing three species in the cyclic dominance. By defining mutation as the birth of mutant species, we investigate how mutant species can affect biodiversity in the existing ecosystem. Through microscopic and macroscopic approaches, we have found that the society of existing normal species can be disturbed by mutant species either the society is maintained accompanying with the coexistence of all species or jeopardized by occupying of mutant species. Due to the birth of mutant species, the existing society may be more complex by constituting two different groups of normal and mutant species, and our results can be contributed to analyze complex ecosystems of many species. We hope our findings may propose a new insight on mutation in cyclic competition systems of many species.


Chaos | 2017

Basins of distinct asymptotic states in the cyclically competing mobile five species game

Beomseok Kim; Junpyo Park

We study the dynamics of cyclic competing mobile five species on spatially extended systems originated from asymmetric initial populations and investigate the basins for the three possible asymptotic states, coexistence of all species, existences of only two independent species, and the extinction. Through extensive numerical simulations, we find a prosperous dependence on initial conditions for species biodiversity. In particular, for fixed given equal densities of two relevant species, we find that only five basins for the existence of two independent species exist and they are spirally entangled for high mobility. A basin of coexistence is outbreaking when the mobility parameter is decreased through a critical value and surrounded by the other five basins. For fixed given equal densities of two independent species, however, we find that basin structures are not spirally entangled. Further, final states of two independent species are totally different. For all possible considerations, the extinction state is not witnessed which is verified by the survival probability. To provide the validity of basin structures from lattice simulations, we analyze the system in mean-field manners. Consequently, results on macroscopic levels are matched to direct lattice simulations for high mobility regimes. These findings provide a good insight into the fundamental issue of the biodiversity among many species than previous cases.


Chaos | 2018

Changes in political party systems arising from conflict and transfer among political parties

Junpyo Park

Conflict that arises between two groups of different paradigms is an inevitable phenomenon, and a representative example of the conflict among different groups is a conflict phenomenon caused by competition among political parties. In this paper, we study the dynamical behavior of a political party system. Considering three major political parties, we investigate how political party systems can be changed by employing a mathematical model. By considering the transfer mechanism of recruitment as well as conflict of competition between political parties, we found that all parties are likely to coexist when both the competition and transfer between the parties are weak, or if either mechanism can occur at a relatively low level. Otherwise, a political party system is changed to a single-party system. In addition, we found that when a party system was changed into a single-party system, it appeared to be either bistable or multistable, and has been elucidate by linear stability analysis. Our results may provide insights to understand mechanisms how political party systems can be changed by conflict and transfer.


Chaos | 2018

Asymmetric interplay leads to robust coexistence by means of a global attractor in the spatial dynamics of cyclic competition

Junpyo Park

In the past decade, there have been many efforts to understand the species interplay with biodiversity in cyclic games within the macro and microscopic levels. In this direction, mobility and intraspecific competition have been found to be the main factors promoting coexistence in spatially extended systems. In this paper, we explore the relevant effect of asymmetric competitions coupled with mobility on the coexistence of cyclically competing species. By examining the coexistence probability, we have found that mobility can facilitate coexistence in the limited cases of asymmetric competition and can be well predicted by the basin structure of the deterministic system. In addition, it is found that mobility can have beneficial and harmful effects on coexistence when all competitions occur asymmetrically. We also found that the coexistence in the spatial dynamics ultimately becomes a global attractor. We hope to provide insights into the associated effects of asymmetric interplays on species coexistence in a spatially extended system and understand the biodiversity of asymmetrically competitive species under more complex competition structures.

Collaboration


Dive into the Junpyo Park's collaboration.

Top Co-Authors

Avatar

Younghae Do

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Ying Cheng Lai

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Zi-Gang Huang

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Sankar

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Beomseok Kim

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Bongsoo Jang

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hunki Baek

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Hongyan Cheng

Beijing University of Posts and Telecommunications

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge