Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Younghae Do is active.

Publication


Featured researches published by Younghae Do.


Scientific Reports | 2015

Asymmetrically interacting spreading dynamics on complex layered networks

Wei Wang; Ming Tang; Hui Yang; Younghae Do; Ying Cheng Lai; GyuWon Lee

The spread of disease through a physical-contact network and the spread of information about the disease on a communication network are two intimately related dynamical processes. We investigate the asymmetrical interplay between the two types of spreading dynamics, each occurring on its own layer, by focusing on the two fundamental quantities underlying any spreading process: epidemic threshold and the final infection ratio. We find that an epidemic outbreak on the contact layer can induce an outbreak on the communication layer, and information spreading can effectively raise the epidemic threshold. When structural correlation exists between the two layers, the information threshold remains unchanged but the epidemic threshold can be enhanced, making the contact layer more resilient to epidemic outbreak. We develop a physical theory to understand the intricate interplay between the two types of spreading dynamics.


Scientific Reports | 2015

Core-like groups result in invalidation of identifying super-spreader by k-shell decomposition

Ying Liu; Ming Tang; Tao Zhou; Younghae Do

Identifying the most influential spreaders is an important issue in understanding and controlling spreading processes on complex networks. Recent studies showed that nodes located in the core of a network as identified by the k-shell decomposition are the most influential spreaders. However, through a great deal of numerical simulations, we observe that not in all real networks do nodes in high shells are very influential: in some networks the core nodes are the most influential which we call true core, while in others nodes in high shells, even the innermost core, are not good spreaders which we call core-like group. By analyzing the k-core structure of the networks, we find that the true core of a network links diversely to the shells of the network, while the core-like group links very locally within the group. For nodes in the core-like group, the k-shell index cannot reflect their location importance in the network. We further introduce a measure based on the link diversity of shells to effectively distinguish the true core and core-like group, and identify core-like groups throughout the networks. Our findings help to better understand the structural features of real networks and influential nodes.


Physical Review E | 2014

Epidemic spreading on complex networks with general degree and weight distributions.

Wei Wang; Ming Tang; Hai-Feng Zhang; Hui Gao; Younghae Do; Zonghua Liu

The spread of disease on complex networks has attracted wide attention in the physics community. Recent works have demonstrated that heterogeneous degree and weight distributions have a significant influence on the epidemic dynamics. In this study, a novel edge-weight-based compartmental approach is developed to estimate the epidemic threshold and epidemic size (final infected density) on networks with general degree and weight distributions, and a remarkable agreement with numerics is obtained. Even in complex networks with the strong heterogeneous degree and weight distributions, this approach is used. We then propose an edge-weight-based removal strategy with different biases and find that such a strategy can effectively control the spread of epidemic when the highly weighted edges are preferentially removed, especially when the weight distribution of a network is extremely heterogenous. The theoretical results from the suggested method can accurately predict the above removal effectiveness.


Scientific Reports | 2015

Improving the accuracy of the k -shell method by removing redundant links: From a perspective of spreading dynamics

Ying Liu; Ming Tang; Tao Zhou; Younghae Do

Recent study shows that the accuracy of the k-shell method in determining node coreness in a spreading process is largely impacted due to the existence of core-like group, which has a large k-shell index but a low spreading efficiency. Based on the analysis of the structure of core-like groups in real-world networks, we discover that nodes in the core-like group are mutually densely connected with very few out-leaving links from the group. By defining a measure of diffusion importance for each edge based on the number of out-leaving links of its both ends, we are able to identify redundant links in the spreading process, which have a relatively low diffusion importance but lead to form the locally densely connected core-like group. After filtering out the redundant links and applying the k-shell method to the residual network, we obtain a renewed coreness ks for each node which is a more accurate index to indicate its location importance and spreading influence in the original network. Moreover, we find that the performance of the ranking algorithms based on the renewed coreness are also greatly enhanced. Our findings help to more accurately decompose the network core structure and identify influential nodes in spreading processes.


Scientific Reports | 2015

Mesoscopic Interactions and Species Coexistence in Evolutionary Game Dynamics of Cyclic Competitions

Hongyan Cheng; Nan Yao; Zi-Gang Huang; Junpyo Park; Younghae Do; Ying Cheng Lai

Evolutionary dynamical models for cyclic competitions of three species (e.g., rock, paper, and scissors, or RPS) provide a paradigm, at the microscopic level of individual interactions, to address many issues in coexistence and biodiversity. Real ecosystems often involve competitions among more than three species. By extending the RPS game model to five (rock-paper-scissors-lizard-Spock, or RPSLS) mobile species, we uncover a fundamental type of mesoscopic interactions among subgroups of species. In particular, competitions at the microscopic level lead to the emergence of various local groups in different regions of the space, each involving three species. It is the interactions among the groups that fundamentally determine how many species can coexist. In fact, as the mobility is increased from zero, two transitions can occur: one from a five- to a three-species coexistence state and another from the latter to a uniform, single-species state. We develop a mean-field theory to show that, in order to understand the first transition, group interactions at the mesoscopic scale must be taken into account. Our findings suggest, more broadly, the importance of mesoscopic interactions in coexistence of great many species.


Journal of The Franklin Institute-engineering and Applied Mathematics | 2014

Nonlinear dynamic analysis for a Francis hydro-turbine governing system and its control

Diyi Chen; Cong Ding; Younghae Do; Xiaoyi Ma; Hua Zhao; Yichen Wang

Abstract In this paper, we introduce a novel model of a hydro-turbine system with the effect of surge tank based on state-space equations to study the nonlinear dynamical behaviors of the hydro-turbine system. The critical points of Hopf bifurcation and the relationship of the stability satisfying with the adjustment coefficients are obtained from direct algebraic criterion. Furthermore, the bifurcation diagrams and Lyapunov exponents are presented and analyzed. The dynamical behaviors of the points with representative characteristics are identified and studied in detail. Both theoretical analysis and numerical simulations show that chaotic oscillations, which cannot stabilize the system, may occur with the changes of adjustment coefficients. To control the undesirable chaotic behaviors in this system, fuzzy sliding mode governor based on the sliding mode control (SMC) and the fuzzy logic are designed, and considering the bounded disturbance. Finally, series of numerical simulations are presented to verify the effectiveness of the proposed governor, which prove that the hydro-turbine governing system can maintain a better operation station under the designed governor.


Physica A-statistical Mechanics and Its Applications | 2016

Identify influential spreaders in complex networks, the role of neighborhood

Ying Liu; Ming Tang; Tao Zhou; Younghae Do

Identifying the most influential spreaders is an important issue in controlling the spreading processes in complex networks. Centrality measures are used to rank node influence in a spreading dynamics. Here we propose a node influence measure based on the centrality of a node and its neighbors’ centrality, which we call the neighborhood centrality. By simulating the spreading processes in six real-world networks, we find that the neighborhood centrality greatly outperforms the basic centrality of a node such as the degree and coreness in ranking node influence and identifying the most influential spreaders. Interestingly, we discover a saturation effect in considering the neighborhood of a node, which is not the case of the larger the better. Specifically speaking, considering the 2-step neighborhood of nodes is a good choice that balances the cost and performance. If further step of neighborhood is taken into consideration, there is no obvious improvement and even decrease in the ranking performance. The saturation effect may be informative for studies that make use of the local structure of a node to determine its importance in the network.


Chaos | 2015

Numerical identification of epidemic thresholds for susceptible-infected-recovered model on finite-size networks

Panpan Shu; Wei Wang; Ming Tang; Younghae Do

Epidemic threshold has always been a very hot topic for studying epidemic dynamics on complex networks. The previous studies have provided different theoretical predictions of the epidemic threshold for the susceptible-infected-recovered (SIR) model, but the numerical verification of these theoretical predictions is still lacking. Considering that the large fluctuation of the outbreak size occurs near the epidemic threshold, we propose a novel numerical identification method of SIR epidemic threshold by analyzing the peak of the epidemic variability. Extensive experiments on synthetic and real-world networks demonstrate that the variability measure can successfully give the numerical threshold for the SIR model. The heterogeneous mean-field prediction agrees very well with the numerical threshold, except the case that the networks are disassortative, in which the quenched mean-field prediction is relatively close to the numerical threshold. Moreover, the numerical method presented is also suitable for the susceptible-infected-susceptible model. This work helps to verify the theoretical analysis of epidemic threshold and would promote further studies on the phase transition of epidemic dynamics.


Modern Physics Letters B | 2011

PERMUTATION ENTROPY APPLIED TO MOVEMENT BEHAVIORS OF DROSOPHILA MELANOGASTER

Yuedan Liu; Tae-Soo Chon; Hunki Baek; Younghae Do; Jinhee Choi; Yun Doo Chung

Movement of different strains in Drosophila melanogaster was continuously observed by using computer interfacing techniques and was analyzed by permutation entropy (PE) after exposure to toxic chemicals, toluene (0.1 mg/m3) and formaldehyde (0.01 mg/m3). The PE values based on one-dimensional time series position (vertical) data were variable according to internal constraint (i.e. strains) and accordingly increased in response to external constraint (i.e. chemicals) by reflecting diversity in movement patterns from both normal and intoxicated states. Cross-correlation function revealed temporal associations between the PE values and between the component movement patterns in different chemicals and strains through the period of intoxication. The entropy based on the order of position data could be a useful means for complexity measure in behavioral changes and for monitoring the impact of stressors in environment.


Scientific Reports | 2015

Uncovering hidden nodes in complex networks in the presence of noise

Ri Qi Su; Ying Cheng Lai; Xiao Wang; Younghae Do

Ascertaining the existence of hidden objects in a complex system, objects that cannot be observed from the external world, not only is curiosity-driven but also has significant practical applications. Generally, uncovering a hidden node in a complex network requires successful identification of its neighboring nodes, but a challenge is to differentiate its effects from those of noise. We develop a completely data-driven, compressive-sensing based method to address this issue by utilizing complex weighted networks with continuous-time oscillatory or discrete-time evolutionary-game dynamics. For any node, compressive sensing enables accurate reconstruction of the dynamical equations and coupling functions, provided that time series from this node and all its neighbors are available. For a neighboring node of the hidden node, this condition cannot be met, resulting in abnormally large prediction errors that, counterintuitively, can be used to infer the existence of the hidden node. Based on the principle of differential signal, we demonstrate that, when strong noise is present, insofar as at least two neighboring nodes of the hidden node are subject to weak background noise only, unequivocal identification of the hidden node can be achieved.

Collaboration


Dive into the Younghae Do's collaboration.

Top Co-Authors

Avatar

Ying Cheng Lai

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

J. M. Lopez

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

M. Sankar

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ming Tang

East China Normal University

View shared research outputs
Top Co-Authors

Avatar

Junpyo Park

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Youngyong Park

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Hunki Baek

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Zi-Gang Huang

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Bongsoo Jang

Ulsan National Institute of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge