Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Junwei Sun is active.

Publication


Featured researches published by Junwei Sun.


The New England Journal of Medicine | 2008

Safety and Efficacy of Gene Transfer for Leber’s Congenital Amaurosis

Albert M. Maguire; Francesca Simonelli; Eric A. Pierce; Edward N. Pugh; Federico Mingozzi; Jeannette L. Bennicelli; Sandro Banfi; Kathleen Marshall; Francesco Testa; Enrico Maria Surace; Settimio Rossi; Arkady Lyubarsky; Valder R. Arruda; Barbara A. Konkle; Edwin M. Stone; Junwei Sun; Jonathan B. Jacobs; L. F. Dell'Osso; Richard W. Hertle; Jian Xing Ma; T. Michael Redmond; Xiaosong Zhu; Bernd Hauck; Olga Zelenaia; Kenneth S. Shindler; Maureen G. Maguire; J. Fraser Wright; Nicholas J. Volpe; Jennifer Wellman McDonnell; Alberto Auricchio

Lebers congenital amaurosis (LCA) is a group of inherited blinding diseases with onset during childhood. One form of the disease, LCA2, is caused by mutations in the retinal pigment epithelium-specific 65-kDa protein gene (RPE65). We investigated the safety of subretinal delivery of a recombinant adeno-associated virus (AAV) carrying RPE65 complementary DNA (cDNA) (ClinicalTrials.gov number, NCT00516477 [ClinicalTrials.gov]). Three patients with LCA2 had an acceptable local and systemic adverse-event profile after delivery of AAV2.hRPE65v2. Each patient had a modest improvement in measures of retinal function on subjective tests of visual acuity. In one patient, an asymptomatic macular hole developed, and although the occurrence was considered to be an adverse event, the patient had some return of retinal function. Although the follow-up was very short and normal vision was not achieved, this study provides the basis for further gene therapy studies in patients with LCA.


The Lancet | 2009

Age-dependent effects of RPE65 gene therapy for Leber's congenital amaurosis: a phase 1 dose-escalation trial

Albert M. Maguire; Katherine A. High; Alberto Auricchio; J. Fraser Wright; Eric A. Pierce; Francesco Testa; Federico Mingozzi; Jeannette L. Bennicelli; Gui-shuang Ying; Settimio Rossi; Ann Fulton; Kathleen Marshall; Sandro Banfi; Daniel C. Chung; Jessica I. W. Morgan; Bernd Hauck; Olga Zelenaia; Xiaosong Zhu; Leslie Raffini; Frauke Coppieters; Elfride De Baere; Kenneth S. Shindler; Nicholas J. Volpe; Enrico Maria Surace; Carmela Acerra; Arkady Lyubarsky; T. Michael Redmond; Edwin M. Stone; Junwei Sun; Jenni Fer Uvellman Mcdonnell

BACKGROUND Gene therapy has the potential to reverse disease or prevent further deterioration of vision in patients with incurable inherited retinal degeneration. We therefore did a phase 1 trial to assess the effect of gene therapy on retinal and visual function in children and adults with Lebers congenital amaurosis. METHODS We assessed the retinal and visual function in 12 patients (aged 8-44 years) with RPE65-associated Lebers congenital amaurosis given one subretinal injection of adeno-associated virus (AAV) containing a gene encoding a protein needed for the isomerohydrolase activity of the retinal pigment epithelium (AAV2-hRPE65v2) in the worst eye at low (1.5 x 10(10) vector genomes), medium (4.8 x 10(10) vector genomes), or high dose (1.5 x 10(11) vector genomes) for up to 2 years. FINDINGS AAV2-hRPE65v2 was well tolerated and all patients showed sustained improvement in subjective and objective measurements of vision (ie, dark adaptometry, pupillometry, electroretinography, nystagmus, and ambulatory behaviour). Patients had at least a 2 log unit increase in pupillary light responses, and an 8-year-old child had nearly the same level of light sensitivity as that in age-matched normal-sighted individuals. The greatest improvement was noted in children, all of whom gained ambulatory vision. The study is registered with ClinicalTrials.gov, number NCT00516477. INTERPRETATION The safety, extent, and stability of improvement in vision in all patients support the use of AAV-mediated gene therapy for treatment of inherited retinal diseases, with early intervention resulting in the best potential gain. FUNDING Center for Cellular and Molecular Therapeutics at the Childrens Hospital of Philadelphia, Foundation Fighting Blindness, Telethon, Research to Prevent Blindness, F M Kirby Foundation, Mackall Foundation Trust, Regione Campania Convenzione, European Union, Associazione Italiana Amaurosi Congenita di Leber, Fund for Scientific Research, Fund for Research in Ophthalmology, and National Center for Research Resources.


Molecular Therapy | 2010

Gene Therapy for Leber's Congenital Amaurosis is Safe and Effective Through 1.5 Years After Vector Administration

Francesca Simonelli; Albert M. Maguire; Francesco Testa; Eric A. Pierce; Federico Mingozzi; Jeannette L. Bennicelli; Settimio Rossi; Kathleen Marshall; Sandro Banfi; Enrico Maria Surace; Junwei Sun; T. Michael Redmond; Xiaosong Zhu; Kenneth S. Shindler; Gui-shuang Ying; Carmela Ziviello; Carmela Acerra; J. Fraser Wright; Jennifer Wellman McDonnell; Katherine A. High; Jean Bennett; Alberto Auricchio

The safety and efficacy of gene therapy for inherited retinal diseases is being tested in humans affected with Lebers congenital amaurosis (LCA), an autosomal recessive blinding disease. Three independent studies have provided evidence that the subretinal administration of adeno-associated viral (AAV) vectors encoding RPE65 in patients affected with LCA2 due to mutations in the RPE65 gene, is safe and, in some cases, results in efficacy. We evaluated the long-term safety and efficacy (global effects on retinal/visual function) resulting from subretinal administration of AAV2-hRPE65v2. Both the safety and the efficacy noted at early timepoints persist through at least 1.5 years after injection in the three LCA2 patients enrolled in the low dose cohort of our trial. A transient rise in neutralizing antibodies to AAV capsid was observed but there was no humoral response to RPE65 protein. The persistence of functional amelioration suggests that AAV-mediated gene transfer to the human retina does not elicit immunological responses which cause significant loss of transduced cells. The persistence of physiologic effect supports the possibility that gene therapy may influence LCA2 disease progression. The safety of the intervention and the stability of the improvement in visual and retinal function in these subjects support the use of AAV-mediated gene augmentation therapy for treatment of inherited retinal diseases.


Science Translational Medicine | 2012

AAV2 Gene Therapy Readministration in Three Adults with Congenital Blindness

Jean Bennett; Manzar Ashtari; Jennifer Wellman; Kathleen Marshall; Laura Cyckowski; Daniel C. Chung; Sarah McCague; Eric A. Pierce; Yong Chen; Jeannette L. Bennicelli; Xiaosong Zhu; Gui-shuang Ying; Junwei Sun; John Fraser Wright; Alberto Auricchio; Francesca Simonelli; Kenneth S. Shindler; Federico Mingozzi; Katherine A. High; Albert M. Maguire

Repeat administration of gene therapy to the contralateral retina of three congenitally blind patients was safe and resulted in improved vision. Shining a Light with Gene Therapy Gene therapy has great potential for treating certain diseases by providing therapeutic genes to target cells. Administration of a gene therapy vector carrying the RPE65 gene in 12 patients with congenital blindness due to RPE65 mutations led to improvements in retinal and visual function and proved to be a safe and stable procedure. In a follow-up study, the same group of researchers led by Jean Bennett set out to discover whether it would be possible to safely administer the vector and the therapeutic transgene to the contralateral eye of the patients. A big concern was whether the first gene therapy injection might have primed the patients’ immune system to respond to the adeno-associated virus (AAV) vector or the product of the therapeutic transgene that it had delivered. To test the safety and efficacy of a second administration of gene therapy to the second eye, the authors demonstrated that readministration was both safe and effective in animal models. Then, they selected 3 of the original 12 patients and readministered the AAV vector and its RPE65 transgene to the contralateral eye. They assessed safety by evaluating inflammatory responses, immune reactions, and extraocular exposure to the AAV vector. Efficacy was assessed through qualitative and quantitative measures of retinal and visual function including the ability to read letters, the extent of side vision, light sensitivity, the pupillary light reflex, the ability to navigate in dim light, and evidence from neuroimaging studies of cortical activation (which demonstrated that signals from the retina were recognized by the brain). The researchers did not discover any safety concerns and did not identify harmful immune responses to the vector or the transgene product. Before and after comparisons of psychophysical data and cortical responses provided the authors with evidence that gene therapy readministration was effective and mediated improvements in retinal and visual function in the three patients. The researchers report that the lack of immune response and the robust safety profile in this readministration gene therapy study may be due in part to the immune-privileged nature of the eye, and the low dose and very pure preparation of the AAV vector. Demonstration of safe and stable reversal of blindness after a single unilateral subretinal injection of a recombinant adeno-associated virus (AAV) carrying the RPE65 gene (AAV2-hRPE65v2) prompted us to determine whether it was possible to obtain additional benefit through a second administration of the AAV vector to the contralateral eye. Readministration of vector to the second eye was carried out in three adults with Leber congenital amaurosis due to mutations in the RPE65 gene 1.7 to 3.3 years after they had received their initial subretinal injection of AAV2-hRPE65v2. Results (through 6 months) including evaluations of immune response, retinal and visual function testing, and functional magnetic resonance imaging indicate that readministration is both safe and efficacious after previous exposure to AAV2-hRPE65v2.


Ophthalmology | 2013

Three-year follow-up after unilateral subretinal delivery of adeno-associated virus in patients with Leber congenital Amaurosis type 2.

Francesco Testa; Albert M. Maguire; Settimio Rossi; Eric A. Pierce; Paolo Melillo; Kathleen Marshall; Sandro Banfi; Enrico Maria Surace; Junwei Sun; Carmela Acerra; J. Fraser Wright; Jennifer Wellman; Katherine A. High; Alberto Auricchio; Jean Bennett; Francesca Simonelli

OBJECTIVE The aim of this study was to show the clinical data of long-term (3-year) follow-up of 5 patients affected by Leber congenital amaurosis type 2 (LCA2) treated with a single unilateral injection of adeno-associated virus AAV2-hRPE65v2. DESIGN Clinical trial. PARTICIPANTS Five LCA2 patients with RPE65 gene mutations. METHODS After informed consent and confirmation of trial eligibility criteria, the eye with worse visual function was selected for subretinal delivery of adeno-associated virus (AAV2-hRPE65v2). Subjects were evaluated before and after surgery at designated follow-up visits (1, 2, 3, 14, 30, 60, 90, 180, 270, and 365 days, 1.5 years, and 3 years) by complete ophthalmic examination. Efficacy for each subject was monitored with best-corrected visual acuity, kinetic visual field, nystagmus testing, and pupillary light reflex. MAIN OUTCOME MEASURES Best-corrected visual acuity, kinetic visual field, nystagmus testing, and pupillary light reflex. RESULTS The data showed a statistically significant improvement of best-corrected visual acuity between baseline and 3 years after treatment in the treated eye (P<0.001). In all patients, an enlargement of the area of visual field was observed that remained stable until 3 years after injection (average values: baseline, 1058 deg(2) vs. 3 years after treatment, 4630 deg(2)) and a reduction of the nystagmus frequency compared with baseline at the 3-year time point. Furthermore, a statistically significant difference was observed in the pupillary constriction of the treated eye (P<0.05) compared with the untreated eye in 3 patients at 1- and 3-year time points. No patients experienced serious adverse events related to the vector in the 3-year postinjection period. CONCLUSIONS The long-term follow-up data (3 years) on the 5-patient Italian cohort involved in the LCA2 gene therapy clinical trial clearly showed a stability of improvement in visual and retinal function that had been achieved a few months after treatment. Longitudinal data analysis showed that the maximum improvement was achieved within 6 months after treatment, and the visual improvement was stable up to the last observed time point. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found after the references.


The Lancet | 2016

Safety and durability of effect of contralateral-eye administration of AAV2 gene therapy in patients with childhood-onset blindness caused by RPE65 mutations: a follow-on phase 1 trial

Jean Bennett; Jennifer Wellman; Kathleen Marshall; Sarah McCague; Manzar Ashtari; Julie DiStefano-Pappas; Okan Elci; Daniel C. Chung; Junwei Sun; J. Fraser Wright; Dominique Cross; Puya Aravand; Laura Cyckowski; Jeannette L. Bennicelli; Federico Mingozzi; Alberto Auricchio; Eric A. Pierce; Jason Ruggiero; Bart P. Leroy; Francesca Simonelli; Katherine A. High; Albert M. Maguire

BACKGROUND Safety and efficacy have been shown in a phase 1 dose-escalation study involving a unilateral subretinal injection of a recombinant adeno-associated virus (AAV) vector containing the RPE65 gene (AAV2-hRPE65v2) in individuals with inherited retinal dystrophy caused by RPE65 mutations. This finding, along with the bilateral nature of the disease and intended use in treatment, prompted us to determine the safety of administration of AAV2-hRPE65v2 to the contralateral eye in patients enrolled in the phase 1 study. METHODS In this follow-on phase 1 trial, one dose of AAV2-hRPE65v2 (1.5 × 10(11) vector genomes) in a total volume of 300 μL was subretinally injected into the contralateral, previously uninjected, eyes of 11 children and adults (aged 11-46 years at second administration) with inherited retinal dystrophy caused by RPE65 mutations, 1.71-4.58 years after the initial subretinal injection. We assessed safety, immune response, retinal and visual function, functional vision, and activation of the visual cortex from baseline until 3 year follow-up, with observations ongoing. This study is registered with ClinicalTrials.gov, number NCT01208389. FINDINGS No adverse events related to the AAV were reported, and those related to the procedure were mostly mild (dellen formation in three patients and cataracts in two). One patient developed bacterial endophthalmitis and was excluded from analyses. We noted improvements in efficacy outcomes in most patients without significant immunogenicity. Compared with baseline, pooled analysis of ten participants showed improvements in mean mobility and full-field light sensitivity in the injected eye by day 30 that persisted to year 3 (mobility p=0.0003, white light full-field sensitivity p<0.0001), but no significant change was seen in the previously injected eyes over the same time period (mobility p=0.7398, white light full-field sensitivity p=0.6709). Changes in visual acuity from baseline to year 3 were not significant in pooled analysis in the second eyes or the previously injected eyes (p>0.49 for all time-points compared with baseline). INTERPRETATION To our knowledge, AAV2-hRPE65v2 is the first successful gene therapy administered to the contralateral eye. The results highlight the use of several outcome measures and help to delineate the variables that contribute to maximal benefit from gene augmentation therapy in this disease. FUNDING Center for Cellular and Molecular Therapeutics at The Childrens Hospital of Philadelphia, Spark Therapeutics, US National Institutes of Health, Foundation Fighting Blindness, Institute for Translational Medicine and Therapeutics, Research to Prevent Blindness, Center for Advanced Retinal and Ocular Therapeutics, Mackall Foundation Trust, F M Kirby Foundation, and The Research Foundation-Flanders.


Archive | 2013

Aav vector compositions and methods for gene transfer to cells, organs and tissues

Katherine A. High; Federico Mingozzi; Junwei Sun; Philip R. Johnson


Molecular Therapy | 2018

Amelioration of Neurosensory Structure and Function in Animal and Cellular Models of a Congenital Blindness

Ji Yun Song; Puya Aravand; Sergei S. Nikonov; Lanfranco Leo; Arkady Lyubarsky; Jeannette L. Bennicelli; Jieyan Pan; Zhangyong Wei; Ivan Shpylchak; Pamela S. Herrera; Daniel J. Bennett; Nicoletta Commins; Albert M. Maguire; Jennifer Pham; Anneke I. den Hollander; Frans P.M. Cremers; Robert K. Koenekoop; Ronald Roepman; Patsy M. Nishina; Shangzhen Zhou; Wei Pan; Gui-shuang Ying; Tomas S. Aleman; Jimmy de Melo; Ilan McNamara; Junwei Sun; Jason A. Mills; Jean Bennett


Archive | 2016

Gene therapy for ocular disorders

Jean Bennett; Jeannette L. Bennicelli; Junwei Sun


Investigative Ophthalmology & Visual Science | 2016

rAAV-mediated gene augmentation improves retinal and visual function and retinal structure in a mouse model for LCA5

Ji Yun Song; Puya Aravand; Ilan McNamara; Junwei Sun; Arkady Lyubarsky; Jean Bennett

Collaboration


Dive into the Junwei Sun's collaboration.

Top Co-Authors

Avatar

Katherine A. High

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Albert M. Maguire

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Federico Mingozzi

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric A. Pierce

Massachusetts Eye and Ear Infirmary

View shared research outputs
Top Co-Authors

Avatar

Jean Bennett

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Kathleen Marshall

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

J. Fraser Wright

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Alberto Auricchio

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Francesca Simonelli

Seconda Università degli Studi di Napoli

View shared research outputs
Researchain Logo
Decentralizing Knowledge