Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Junyan Tao is active.

Publication


Featured researches published by Junyan Tao.


Hepatology | 2016

Modeling a human hepatocellular carcinoma subset in mice through coexpression of met and point‐mutant β‐catenin

Junyan Tao; Emily Xu; Yifei Zhao; Sucha Singh; Xiaolei Li; Gabrielle Couchy; Xin Chen; Jessica Zucman-Rossi; Maria Chikina; Satdarshan P.S. Monga

Hepatocellular cancer (HCC) remains a significant therapeutic challenge due to its poorly understood molecular basis. In the current study, we investigated two independent cohorts of 249 and 194 HCC cases for any combinatorial molecular aberrations. Specifically we assessed for simultaneous HMET expression or hMet activation and catenin β1 gene (CTNNB1) mutations to address any concomitant Met and Wnt signaling. To investigate cooperation in tumorigenesis, we coexpressed hMet and β‐catenin point mutants (S33Y or S45Y) in hepatocytes using sleeping beauty transposon/transposase and hydrodynamic tail vein injection and characterized tumors for growth, signaling, gene signatures, and similarity to human HCC. Missense mutations in exon 3 of CTNNB1 were identified in subsets of HCC patients. Irrespective of amino acid affected, all exon 3 mutations induced similar changes in gene expression. Concomitant HMET overexpression or hMet activation and CTNNB1 mutations were evident in 9%‐12.5% of HCCs. Coexpression of hMet and mutant‐β‐catenin led to notable HCC in mice. Tumors showed active Wnt and hMet signaling with evidence of glutamine synthetase and cyclin D1 positivity and mitogen‐activated protein kinase/extracellular signal‐regulated kinase, AKT/Ras/mammalian target of rapamycin activation. Introduction of dominant‐negative T‐cell factor 4 prevented tumorigenesis. The gene expression of mouse tumors in hMet‐mutant β‐catenin showed high correlation, with subsets of human HCC displaying concomitant hMet activation signature and CTNNB1 mutations. Conclusion: We have identified cooperation of hMet and β‐catenin activation in a subset of HCC patients and modeled this human disease in mice with a significant transcriptomic intersection; this model will provide novel insight into the biology of this tumor and allow us to evaluate novel therapies as a step toward precision medicine. (Hepatology 2016;64:1587‐1605)


Journal of Biological Chemistry | 2016

Coordinated Activities of Multiple Myc-dependent and Myc-independent Biosynthetic Pathways in Hepatoblastoma.

Huabo Wang; Jie Lu; Lia R. Edmunds; Sucheta Kulkarni; James M. Dolezal; Junyan Tao; Sarangarajan Ranganathan; Laura Jackson; Marc Fromherz; Donna Beer-Stolz; Radha Uppala; Sivakama S. Bharathi; Satdarshan P.S. Monga; Eric S. Goetzman; Edward V. Prochownik

Hepatoblastoma (HB) is associated with aberrant activation of the β-catenin and Hippo/YAP signaling pathways. Overexpression of mutant β-catenin and YAP in mice induces HBs that express high levels of c-Myc (Myc). In light of recent observations that Myc is unnecessary for long-term hepatocyte proliferation, we have now examined its role in HB pathogenesis using the above model. Although Myc was found to be dispensable for in vivo HB initiation, it was necessary to sustain rapid tumor growth. Gene expression profiling identified key molecular differences between myc+/+ (WT) and myc−/− (KO) hepatocytes and HBs that explain these behaviors. In HBs, these included both Myc-dependent and Myc-independent increases in families of transcripts encoding ribosomal proteins, non-structural factors affecting ribosome assembly and function, and enzymes catalyzing glycolysis and lipid bio-synthesis. In contrast, transcripts encoding enzymes involved in fatty acid β-oxidation were mostly down-regulated. Myc-independent metabolic changes associated with HBs included dramatic reductions in mitochondrial mass and oxidative function, increases in ATP content and pyruvate dehydrogenase activity, and marked inhibition of fatty acid β-oxidation (FAO). Myc-dependent metabolic changes included higher levels of neutral lipid and acetyl-CoA in WT tumors. The latter correlated with higher histone H3 acetylation. Collectively, our results indicate that the role of Myc in HB pathogenesis is to impose mutually dependent changes in gene expression and metabolic reprogramming that are unattainable in non-transformed cells and that cooperate to maximize tumor growth.


Hepatology | 2017

Targeting β‐catenin in hepatocellular cancers induced by coexpression of mutant β‐catenin and K‐Ras in mice

Junyan Tao; Rong Zhang; Sucha Singh; Minakshi Poddar; Emily Xu; Michael Oertel; Xin Chen; Shanthi Ganesh; Marc Abrams; Satdarshan P.S. Monga

Recently, we have shown that coexpression of hMet and mutant‐β‐catenin using sleeping beauty transposon/transposase leads to hepatocellular carcinoma (HCC) in mice that corresponds to around 10% of human HCC. In the current study, we investigate whether Ras activation, which can occur downstream of Met signaling, is sufficient to cause HCC in association with mutant‐β‐catenin. We also tested therapeutic efficacy of targeting β‐catenin in an HCC model. We show that mutant‐K‐Ras (G12D), which leads to Ras activation, cooperates with β‐catenin mutants (S33Y, S45Y) to yield HCC in mice. Affymetrix microarray showed > 90% similarity in gene expression in mutant‐K‐Ras‐β‐catenin and Met‐β‐catenin HCC. K‐Ras‐β‐catenin tumors showed up‐regulation of β‐catenin targets like glutamine synthetase (GS), leukocyte cell‐derived chemotaxin 2, Regucalcin, and Cyclin‐D1 and of K‐Ras effectors, including phosphorylated extracellular signal‐regulated kinase, phosphorylated protein kinase B, phosphorylated mammalian target of rapamycin, phosphorylated eukaryotic translation initiation factor 4E, phosphorylated 4E‐binding protein 1, and p‐S6 ribosomal protein. Inclusion of dominant‐negative transcription factor 4 at the time of K‐Ras‐β‐catenin injection prevented HCC and downstream β‐catenin and Ras signaling. To address whether targeting β‐catenin has any benefit postestablishment of HCC, we administered K‐Ras‐β‐catenin mice with EnCore lipid nanoparticles (LNP) loaded with a Dicer substrate small interfering RNA targeting catenin beta 1 (CTNNB1; CTNNB1‐LNP), scrambled sequence (Scr‐LNP), or phosphate‐buffered saline for multiple cycles. A significant decrease in tumor burden was evident in the CTNNB1‐LNP group versus all controls, which was associated with dramatic decreases in β‐catenin targets and some K‐Ras effectors, leading to reduced tumor cell proliferation and viability. Intriguingly, in relatively few mice, non‐GS‐positive tumors, which were evident as a small subset of overall tumor burden, were not affected by β‐catenin suppression. Conclusion: Ras activation downstream of c‐Met is sufficient to induce clinically relevant HCC in cooperation with mutant β‐catenin. β‐catenin suppression by a clinically relevant modality is effective in treatment of β‐catenin‐positive, GS‐positive HCCs. (Hepatology 2017;65:1581‐1599)


Molecular Cancer Therapeutics | 2016

Direct Pharmacological Inhibition of β-Catenin by RNA Interference in Tumors of Diverse Origin.

Shanthi Ganesh; Martin Koser; Wendy Cyr; Girish Chopda; Junyan Tao; Xue Shui; Bo Ying; Dongyu Chen; Purva Pandya; Edmond Chipumuro; Zakir Siddiquee; Kevin Craig; Cheng-Jung Lai; Henryk T. Dudek; Satdarshan P.S. Monga; Weimin Wang; Bob D. Brown; Marc Abrams

The Wnt/β-catenin pathway is among the most frequently altered signaling networks in human cancers. Despite decades of preclinical and clinical research, efficient therapeutic targeting of Wnt/β-catenin has been elusive. RNA interference (RNAi) technology silences genes at the mRNA level and therefore can be applied to previously undruggable targets. Lipid nanoparticles (LNP) represent an elegant solution for the delivery of RNAi-triggering oligonucleotides to disease-relevant tissues, but have been mostly restricted to applications in the liver. In this study, we systematically tuned the composition of a prototype LNP to enable tumor-selective delivery of a Dicer-substrate siRNA (DsiRNA) targeting CTNNB1, the gene encoding β-catenin. This formulation, termed EnCore-R, demonstrated pharmacodynamic activity in subcutaneous human tumor xenografts, orthotopic patient-derived xenograft (PDX) tumors, disseminated hematopoietic tumors, genetically induced primary liver tumors, metastatic colorectal tumors, and murine metastatic melanoma. DsiRNA delivery was homogeneous in tumor sections, selective over normal liver and independent of apolipoprotein-E binding. Significant tumor growth inhibition was achieved in Wnt-dependent colorectal and hepatocellular carcinoma models, but not in Wnt-independent tumors. Finally, no evidence of accelerated blood clearance or sustained liver transaminase elevation was observed after repeated dosing in nonhuman primates. These data support further investigation to gain mechanistic insight, optimize dose regimens, and identify efficacious combinations with standard-of-care therapeutics. Mol Cancer Ther; 15(9); 2143–54. ©2016 AACR.


American Journal of Pathology | 2017

Thyroid Hormone Receptor-β Agonist GC-1 Inhibits Met-β-Catenin–Driven Hepatocellular Cancer

Elisabetta Puliga; Qian Min; Junyan Tao; Rong Zhang; Tirthadipa Pradhan-Sundd; Minakshi Poddar; Sucha Singh; Amedeo Columbano; Jinming Yu; Satdarshan P.S. Monga

The thyromimetic agent GC-1 induces hepatocyte proliferation via Wnt/β-catenin signaling and may promote regeneration in both acute and chronic liver insufficiencies. However, β-catenin activation due to mutations in CTNNB1 is seen in a subset of hepatocellular carcinomas (HCC). Thus, it is critical to address any effect of GC-1 on HCC growth and development before its use can be advocated to stimulate regeneration in chronic liver diseases. In this study, we first examined the effect of GC-1 on β-catenin-T cell factor 4 activity in HCC cell lines harboring wild-type or mutated-CTNNB1. Next, we assessed the effect of GC-1 on HCC in FVB mice generated by hydrodynamic tail vein injection of hMet-S45Y-β-catenin, using the sleeping beauty transposon-transposase. Four weeks following injection, mice were fed 5 mg/kg GC-1 or basal diet for 10 or 21 days. GC-1 treatment showed no effect on β-catenin-T cell factor 4 activity in HCC cells, irrespective of CTNNB1 mutations. Treatment with GC-1 for 10 or 21 days led to a significant reduction in tumor burden, associated with decreased tumor cell proliferation and dramatic decreases in phospho-(p-)Met (Y1234/1235), p-extracellular signal-related kinase, and p-STAT3 without affecting β-catenin and its downstream targets. GC-1 exerts a notable antitumoral effect on hMet-S45Y-β-catenin HCC by inactivating Met signaling. GC-1 does not promote β-catenin activation in HCC. Thus, GC-1 may be safe for use in inducing regeneration during chronic hepatic insufficiency.


bioRxiv | 2018

Dynamics and predicted drug response of a gene network linking dedifferentiation with beta-catenin dysfunction in hepatocellular carcinoma

Claude Gerard; Mickael Di-Luoffo; Leolo Gonay; Stefano Caruso; Gabrielle Couchy; Axelle Loriot; Junyan Tao; Katarzyna Konobrocka; Sabine Cordi; Satdarshan P.S. Monga; Emmanuel Hanert; Jessica Zucman-Rossi; Frédéric P. Lemaigre

Alterations of individual genes variably affect development of hepatocellular carcinoma (HCC), prompting the need to characterize the function of tumor-promoting genes in the context of gene regulatory networks (GRN). Here, we identify a GRN which functionally links LIN28B-dependent dedifferentiation with dysfunction of CTNNB1 (β-CATENIN). LIN28B and CTNNB1 form a functional GRN with SMARCA4 (BRG1), Let-7b, SOX9, TP53 and MYC. GRN activity is detected in HCC and gastrointestinal cancers; it negatively correlates with HCC prognosis and contributes to a transcriptomic profile typical of the proliferative class of HCC. Using data from The Cancer Genome Atlas and from transcriptomic, transfection and mouse transgenic experiments, we generated and validated a quantitative mathematical model of the GRN. The model predicts how the expression of GRN components changes when the expression of another GRN member varies or is inhibited by a pharmacological drug. The dynamics of GRN component expression reveal distinct cell states that can switch reversibly in normal condition, and irreversibly in HCC. We conclude that identification and modelling of the GRN provides insight into prognosis, mechanisms of tumor-promoting genes and response to pharmacological agents in HCC.


American Journal of Pathology | 2018

Hepatocyte-Derived Lipocalin 2 Is a Potential Serum Biomarker Reflecting Tumor Burden in Hepatoblastoma

Laura Molina; Danielle Bell; Junyan Tao; Morgan Preziosi; Tirthadipa Pradhan-Sundd; Sucha Singh; Minakshi Poddar; Jian-Hua Luo; Sarangarajan Ranganathan; Maria Chikina; Satdarshan P.S. Monga

Hepatoblastoma (HB) is the most common pediatric liver malignant tumor. Previously, we reported co-activation of β-catenin and Yes-associated protein-1 (YAP1) in 80% of HB. Hepatic co-expression of active β-catenin and YAP1 via sleeping beauty transposon/transposase and hydrodynamic tail vein injection led to HB development in mice. Here, we identify lipocalin 2 (Lcn2) as a target of β-catenin and YAP1 in HB and show that serum Lcn2 values positively correlated with tumor burden. Lcn2 was strongly expressed in HB tumor cells in our mouse model. A tissue array of 62 HB cases showed highest LCN2 expression in embryonal and lowest in fetal, blastemal, and small cell undifferentiated forms of HB. Knockdown of LCN2 in HB cells had no effect on cell proliferation but reduced NF-κB reporter activity. Next, liver-specific Lcn2 knockout (KO) mice were generated. No difference in tumor burden was observed between Lcn2 KO mice and wild-type littermate controls after sleeping beauty transposon/transposase and hydrodynamic tail vein injection delivery of active YAP1 and β-catenin, although Lcn2 KO mice with HB lacked any serum Lcn2 elevation, demonstrating that transformed hepatocytes are the source of serum Lcn2. More blastemal areas and inflammation were observed within HB in Lcn2 KO compared with wild-type tumors. In conclusion, Lcn2 expressed in hepatocytes appears to be dispensable for the pathogenesis of HB. However, transformed hepatocytes secrete serum Lcn2, making Lcn2 a valuable biomarker for HB.


Gastroenterology | 2017

MAN2A1-FER Fusion Gene Is Expressed by Human Liver and Other Tumor Types and Has Oncogenic Activity in Mice

Zhang-Hui Chen; Yan P. Yu; Junyan Tao; Silvia Liu; George C. Tseng; Michael A. Nalesnik; Ronald L. Hamilton; Rohit Bhargava; Joel B. Nelson; Arjun Pennathur; Satdarshan P.S. Monga; James D. Luketich; George K. Michalopoulos; Jian-Hua Luo


Gene Expression | 2018

THE EFFECT OF SELECTIVE C-MET INHIBITOR ON HCC IN THE MET-ACTIVE, β-CATENIN MUTATED MOUSE MODEL

Na Zhan; Adeola Adebayo Michael; Kaiyuan Wu; Gang Zeng; Aaron Bell; Junyan Tao; Satdarshan P.S. Monga


The FASEB Journal | 2015

Differential And Cooperative Roles Of β-Catenin And Yap During Hepatoblastoma Pathogenesis

Junyan Tao; Xiaolei Li; Sucha Singh; Xin Chen; Satdarshan P.S. Monga

Collaboration


Dive into the Junyan Tao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sucha Singh

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Xin Chen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaolei Li

University of California

View shared research outputs
Top Co-Authors

Avatar

Emily Xu

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Jian-Hua Luo

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Marc Abrams

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Maria Chikina

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Rong Zhang

University of Pittsburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge