Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Junyuan Zhang is active.

Publication


Featured researches published by Junyuan Zhang.


Nature Genetics | 2012

Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas

Gang Wu; Alberto Broniscer; Charles Lu; Barbara S. Paugh; Jared Becksfort; Chunxu Qu; Li Ding; Robert Huether; Matthew Parker; Junyuan Zhang; Amar Gajjar; Michael A. Dyer; Charles G. Mullighan; Richard J. Gilbertson; Elaine R. Mardis; Richard Wilson; James R. Downing; David W. Ellison; Jinghui Zhang; Suzanne J. Baker

To identify somatic mutations in pediatric diffuse intrinsic pontine glioma (DIPG), we performed whole-genome sequencing of DNA from seven DIPGs and matched germline tissue and targeted sequencing of an additional 43 DIPGs and 36 non-brainstem pediatric glioblastomas (non-BS-PGs). We found that 78% of DIPGs and 22% of non-BS-PGs contained a mutation in H3F3A, encoding histone H3.3, or in the related HIST1H3B, encoding histone H3.1, that caused a p.Lys27Met amino acid substitution in each protein. An additional 14% of non-BS-PGs had somatic mutations in H3F3A causing a p.Gly34Arg alteration.


Journal of Clinical Oncology | 2010

Integrated Molecular Genetic Profiling of Pediatric High-Grade Gliomas Reveals Key Differences With the Adult Disease

Barbara S. Paugh; Chunxu Qu; Chris Jones; Zhaoli Liu; Martyna Adamowicz-Brice; Junyuan Zhang; Beth Coyle; Jennifer Barrow; Darren Hargrave; James Lowe; Amar Gajjar; Wei Zhao; Alberto Broniscer; David W. Ellison; Richard Grundy; Suzanne J. Baker

PURPOSE To define copy number alterations and gene expression signatures underlying pediatric high-grade glioma (HGG). PATIENTS AND METHODS We conducted a high-resolution analysis of genomic imbalances in 78 de novo pediatric HGGs, including seven diffuse intrinsic pontine gliomas, and 10 HGGs arising in children who received cranial irradiation for a previous cancer using single nucleotide polymorphism microarray analysis. Gene expression was analyzed with gene expression microarrays for 53 tumors. Results were compared with publicly available data from adult tumors. RESULTS Significant differences in copy number alterations distinguish childhood and adult glioblastoma. PDGFRA was the predominant target of focal amplification in childhood HGG, including diffuse intrinsic pontine gliomas, and gene expression analyses supported an important role for deregulated PDGFRalpha signaling in pediatric HGG. No IDH1 hotspot mutations were found in pediatric tumors, highlighting molecular differences with adult secondary glioblastoma. Pediatric and adult glioblastomas were clearly distinguished by frequent gain of chromosome 1q (30% v 9%, respectively) and lower frequency of chromosome 7 gain (13% v 74%, respectively) and 10q loss (35% v 80%, respectively). PDGFRA amplification and 1q gain occurred at significantly higher frequency in irradiation-induced tumors, suggesting that these are initiating events in childhood gliomagenesis. A subset of pediatric HGGs showed minimal copy number changes. CONCLUSION Integrated molecular profiling showed substantial differences in the molecular features underlying pediatric and adult HGG, indicating that findings in adult tumors cannot be simply extrapolated to younger patients. PDGFRalpha may be a useful target for pediatric HGG, including diffuse pontine gliomas.


Nature Genetics | 2001

Pten regulates neuronal soma size: a mouse model of Lhermitte-Duclos disease.

Chang Hyuk Kwon; Xiaoyan Zhu; Junyuan Zhang; Lori L. Knoop; Ruby Tharp; Richard J. Smeyne; Charles G. Eberhart; Peter C. Burger; Suzanne J. Baker

Somatic inactivation of PTEN occurs in different human tumors including glioblastoma, endometrial carcinoma and prostate carcinoma. Germline mutations in PTEN result in a range of phenotypic abnormalities that occur with variable penetrance, including neurological features such as macrocephaly, seizures, ataxia and Lhermitte-Duclos disease (also described as dysplastic gangliocytoma of the cerebellum). Homozygous deletion of Pten causes embryonic lethality in mice. To investigate function in the brain, we used Cre-loxP technology to selectively inactivate Pten in specific mouse neuronal populations. Loss of Pten resulted in progressive macrocephaly and seizures. Neurons lacking Pten expressed high levels of phosphorylated Akt and showed a progressive increase in soma size without evidence of abnormal proliferation. Cerebellar abnormalities closely resembled the histopathology of human Lhermitte-Duclos disease. These results indicate that Pten regulates neuronal size in vivo in a cell-autonomous manner and provide new insights into the etiology of Lhermitte-Duclos disease.


Nature Genetics | 2013

Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas

Junyuan Zhang; Gang Wu; Cp Miller; Ruth G. Tatevossian; James Dalton; Bo Tang; Wilda Orisme; Chandanamali Punchihewa; Michael W. Parker; Ibrahim Qaddoumi; F.A. Boop; Charles Lu; Cyriac Kandoth; Li Ding; Ryan Lee; Robert Huether; Xian Chen; Erin Hedlund; Panduka Nagahawatte; Michael Rusch; Kristy Boggs; Jinjun Cheng; Jared Becksfort; Jing Ma; Guangchun Song; Yongjin Li; Lei Wei; Jioajiao Wang; Sheila A. Shurtleff; John Easton

The most common pediatric brain tumors are low-grade gliomas (LGGs). We used whole-genome sequencing to identify multiple new genetic alterations involving BRAF, RAF1, FGFR1, MYB, MYBL1 and genes with histone-related functions, including H3F3A and ATRX, in 39 LGGs and low-grade glioneuronal tumors (LGGNTs). Only a single non-silent somatic alteration was detected in 24 of 39 (62%) tumors. Intragenic duplications of the portion of FGFR1 encoding the tyrosine kinase domain (TKD) and rearrangements of MYB were recurrent and mutually exclusive in 53% of grade II diffuse LGGs. Transplantation of Trp53-null neonatal astrocytes expressing FGFR1 with the duplication involving the TKD into the brains of nude mice generated high-grade astrocytomas with short latency and 100% penetrance. FGFR1 with the duplication induced FGFR1 autophosphorylation and upregulation of the MAPK/ERK and PI3K pathways, which could be blocked by specific inhibitors. Focusing on the therapeutically challenging diffuse LGGs, our study of 151 tumors has discovered genetic alterations and potential therapeutic targets across the entire range of pediatric LGGs and LGGNTs.


Nature Genetics | 2014

The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma.

Gang Wu; Alexander K. Diaz; Barbara S. Paugh; Sherri Rankin; Bensheng Ju; Yongjin Li; Xiaoyan Zhu; Chunxu Qu; Xiang Chen; Junyuan Zhang; John Easton; Michael Edmonson; Xiaotu Ma; Charles Lu; Panduka Nagahawatte; Erin Hedlund; Michael Rusch; Stanley Pounds; Tong Lin; Arzu Onar-Thomas; Robert Huether; Richard W. Kriwacki; Matthew A. Parker; Pankaj Gupta; Jared Becksfort; Lei Wei; Heather L. Mulder; Kristy Boggs; Bhavin Vadodaria; Donald Yergeau

Pediatric high-grade glioma (HGG) is a devastating disease with a less than 20% survival rate 2 years after diagnosis. We analyzed 127 pediatric HGGs, including diffuse intrinsic pontine gliomas (DIPGs) and non-brainstem HGGs (NBS-HGGs), by whole-genome, whole-exome and/or transcriptome sequencing. We identified recurrent somatic mutations in ACVR1 exclusively in DIPGs (32%), in addition to previously reported frequent somatic mutations in histone H3 genes, TP53 and ATRX, in both DIPGs and NBS-HGGs. Structural variants generating fusion genes were found in 47% of DIPGs and NBS-HGGs, with recurrent fusions involving the neurotrophin receptor genes NTRK1, NTRK2 and NTRK3 in 40% of NBS-HGGs in infants. Mutations targeting receptor tyrosine kinase–RAS-PI3K signaling, histone modification or chromatin remodeling, and cell cycle regulation were found in 68%, 73% and 59% of pediatric HGGs, respectively, including in DIPGs and NBS-HGGs. This comprehensive analysis provides insights into the unique and shared pathways driving pediatric HGG within and outside the brainstem.


Proceedings of the National Academy of Sciences of the United States of America | 2003

mTor is required for hypertrophy of Pten-deficient neuronal soma in vivo

Chang-Hyuk Kwon; Xiaoyan Zhu; Junyuan Zhang; Suzanne J. Baker

The mechanisms that regulate mammalian cell size during development and homeostatic maintenance are poorly understood. The tumor suppressor Pten is required for correct maintenance of mammalian neuronal soma size. Selective inactivation of Pten in postnatal granule neurons of the cerebellum and dentate gyrus in mouse causes cell-autonomous hypertrophy as well as more complex phenotypes, including progressive macrocephaly, seizures, and premature death. To determine the contribution of mTor signaling to Pten-mediated growth regulation in the mammalian nervous system, we treated Pten conditional knockout mice with CCI-779, a specific mTor inhibitor. mTor inhibition decreased the seizure frequency and death rate in Pten mutant mice, prevented the increase in Pten-deficient neuronal soma size in young mice, and reversed neuronal soma enlargement in adult mice. mTor inhibition did not decrease the size of wild-type adult neurons. Thus, mTor is required for neuronal hypertrophy downstream of Pten deficiency, but is not required for maintenance of normal neuronal soma size. mTOR inhibitors may be useful therapeutic agents for diseases in brain resulting from PTEN deficiency such as Lhermitte–Duclos disease or glioblastoma multiforme.


Journal of Clinical Oncology | 2011

Genome-Wide Analyses Identify Recurrent Amplifications of Receptor Tyrosine Kinases and Cell-Cycle Regulatory Genes in Diffuse Intrinsic Pontine Glioma

Barbara S. Paugh; Alberto Broniscer; Chunxu Qu; Claudia P. Miller; Junyuan Zhang; Ruth G. Tatevossian; James M. Olson; J. Russell Geyer; Susan N. Chi; Nasjla Saba da Silva; Arzu Onar-Thomas; Justin N. Baker; Amar Gajjar; David W. Ellison; Suzanne J. Baker

PURPOSE Long-term survival for children with diffuse intrinsic pontine glioma (DIPG) is less than 10%, and new therapeutic targets are urgently required. We evaluated a large cohort of DIPGs to identify recurrent genomic abnormalities and gene expression signatures underlying DIPG. PATIENTS AND METHODS Single-nucleotide polymorphism arrays were used to compare the frequencies of genomic copy number abnormalities in 43 DIPGs and eight low-grade brainstem gliomas with data from adult and pediatric (non-DIPG) glioblastomas, and expression profiles were evaluated using gene expression arrays for 27 DIPGs, six low-grade brainstem gliomas, and 66 nonbrainstem low-grade gliomas. RESULTS Frequencies of specific large-scale and focal imbalances varied significantly between DIPGs and nonbrainstem pediatric glioblastomas. Focal amplifications of genes within the receptor tyrosine kinase-Ras-phosphoinositide 3-kinase signaling pathway were found in 47% of DIPGs, the most common of which involved PDGFRA and MET. Thirty percent of DIPGs contained focal amplifications of cell-cycle regulatory genes controlling retinoblastoma protein (RB) phosphorylation, and 21% had concurrent amplification of genes from both pathways. Some tumors showed heterogeneity in amplification patterns. DIPGs showed distinct gene expression signatures related to developmental processes compared with nonbrainstem pediatric high-grade gliomas, whereas expression signatures of low-grade brainstem and nonbrainstem gliomas were similar. CONCLUSION DIPGs comprise a molecularly related but distinct subgroup of pediatric gliomas. Genomic studies suggest that targeted inhibition of receptor tyrosine kinases and RB regulatory proteins may be useful therapies for DIPG.


Cancer Cell | 2011

Cooperativity within and among Pten, p53, and Rb Pathways Induces High-Grade Astrocytoma in Adult Brain

Lionel M.L. Chow; Raelene Endersby; Xiaoyan Zhu; Sherri Rankin; Chunxu Qu; Junyuan Zhang; Alberto Broniscer; David W. Ellison; Suzanne J. Baker

Mutations in the PTEN, TP53, and RB1 pathways are obligate events in the pathogenesis of human glioblastomas. We induced various combinations of deletions in these tumor suppressors in astrocytes and neural precursors in mature mice, resulting in astrocytomas ranging from grade III to grade IV (glioblastoma). There was selection for mutation of multiple genes within a pathway, shown by somatic amplifications of genes in the PI3K or Rb pathway in tumors in which Pten or Rb deletion was an initiating event. Despite multiple mutations within PI3K and Rb pathways, elevated Mapk activation was not consistent. Gene expression profiling revealed striking similarities to subclasses of human diffuse astrocytoma. Astrocytomas were found within and outside of proliferative niches in the adult brain.


Cancer Research | 2013

Novel Oncogenic PDGFRA Mutations in Pediatric High-Grade Gliomas

Barbara S. Paugh; Xiaoyan Zhu; Chunxu Qu; Raelene Endersby; Alexander K. Diaz; Junyuan Zhang; Diana Carvalho; Rui M. Reis; Arzu Onar-Thomas; Alberto Broniscer; Jinghui Zhang; Chris Jones; David W. Ellison; S Baker

The outcome for children with high-grade gliomas (HGG) remains dismal, with a 2-year survival rate of only 10% to 30%. Diffuse intrinsic pontine glioma (DIPG) comprise a subset of HGG that arise in the brainstem almost exclusively in children. Genome-wide analyses of copy number imbalances previously showed that platelet-derived growth factor receptor α (PDGFRA) is the most frequent target of focal amplification in pediatric HGGs, including DIPGs. To determine whether PDGFRA is also targeted by more subtle mutations missed by copy number analysis, we sequenced all PDGFRA coding exons from a cohort of pediatric HGGs. Somatic-activating mutations were identified in 14.4% (13 of 90) of nonbrainstem pediatric HGGs and 4.7% (2 of 43) of DIPGs, including missense mutations and in-frame deletions and insertions not previously described. Forty percent of tumors with mutation showed concurrent amplification, whereas 60% carried heterozygous mutations. Six different mutations impacting different domains all resulted in ligand-independent receptor activation that was blocked by small molecule inhibitors of PDGFR. Expression of mutants in p53-null primary mouse astrocytes conferred a proliferative advantage in vitro and generated HGGs in vivo with complete penetrance when implanted into brain. The gene expression signatures of these murine HGGs reflected the spectrum of human diffuse HGGs. PDGFRA intragenic deletion of exons 8 and 9 were previously shown in adult HGG, but were not detected in 83 nonbrainstem pediatric HGG and 57 DIPGs. Thus, a distinct spectrum of mutations confers constitutive receptor activation and oncogenic activity to PDGFRα in childhood HGG.


Oncogene | 1999

Transforming activity of EWS/FLI is not strictly dependent upon DNA-binding activity

S Jaishankar; Junyuan Zhang; Martine F. Roussel; Suzanne J. Baker

In approximately 85% of Ewing sarcomas, chromosomal translocations give rise to the chimeric gene EWS/FLI, encoding the N-terminus of the RNA binding protein EWS fused to the DNA-binding domain of the ETS protein FLI-1. EWS/FLI is a stronger transcriptional activator than wild-type FLI-1, although both proteins bind to the same DNA sequences in vitro. In addition, EWS/FLI, but not FLI-1, is a transforming oncogene in NIH3T3 fibroblasts. EWS/FLI is thought to transform through its ability to deregulate the expression of target genes. We introduced several point mutations into the ETS domain of EWS/FLI that abolished DNA-binding activity. Although two of these mutations disrupted the transforming activity of EWS/FLI, one mutated protein containing a substitution of isoleucine 347 with glutamic acid (I347E) retained diminished transforming activity. In addition, EWS/FLI I347E did not activate expression of the endogenous EWS/FLI target gene manic fringe (MFNG). These studies demonstrate that a portion of the oncogenic activity of EWS/FLI is independent of FLI DNA-binding activity.

Collaboration


Dive into the Junyuan Zhang's collaboration.

Top Co-Authors

Avatar

Barbara S. Paugh

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Suzanne J. Baker

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Chunxu Qu

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

David W. Ellison

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Xiaoyan Zhu

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Alberto Broniscer

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Gang Wu

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Arzu Onar-Thomas

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Jinghui Zhang

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Alexander K. Diaz

St. Jude Children's Research Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge