Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jürgen Groeneveld is active.

Publication


Featured researches published by Jürgen Groeneveld.


Australian Journal of Botany | 2007

Conservation biology of banksias: insights from natural history to simulation modelling

Byron B. Lamont; Neal J. Enright; E.T.F. Witkowski; Jürgen Groeneveld

We have studied the ecology and conservation requirements of Banksia species in the species-rich sandplains of south-western Australia for 25 years. Loss of habitat through land-clearing has had the greatest impact on their conservation status over the last 50 years. Ascertaining optimal conditions for conservation management in bushland requires detailed knowledge of the species under consideration, including demographic attributes, fire regime, growing conditions and interactions with other species. Where populations have been fragmented, seed production per plant has also fallen. The group most vulnerable to the vagaries of fire, disease, pests, weeds and climate change are the non-sprouters, rather than the resprouters, with population extinction so far confined to non-sprouting species. Recent short-interval fires (<8 years) appear to have had little impact at the landscape scale, possibly because they are rare and patchy. Fire intervals exceeding 25-50 years can also lead to local extinction. Up to 200 viable seeds are required for parent replacement in Banksia hookeriana when growing conditions are poor (low post-fire rainfall, commercial flower harvesting) and seed banks of this size can take up to 12 years to be reached. Seed production is rarely limited by pollinators, but interannual seasonal effects and resource availability are important. Genetic diversity of the seed store is quickly restored to the level of the parents in B. hookeriana. Florivores and granivores generally reduce seed stores, although this varies markedly among species. In Banksia tricuspis, black cockatoos actually increase seed set by selectively destroying borers. Potential loss of populations through the root pathogen Phytophthora cinnamomi also challenges management, especially in the southern sandplains. Prefire dead plants are a poor source of seeds for the next generation when fire does occur. Harvesting seeds and sowing post-fire have much to commend them for critically endangered species. Bare areas caused by humans can result in ideal conditions for plant growth and seed set. However, in the case of B. hookeriana/B. prionotes, disturbance by humans has fostered hybridisation, threatening the genetic integrity of both species, whereas fine-textured soils are unsuitable for colonisation or rehabilitation. Few viable seeds become seedlings after fire, owing to post-release granivory and herbivory and unsuitable germination conditions. Seedling-competitive effects ensure that season/intensity of fire is not critical to recruitment levels, except in the presence of weeds. Water availability during summer-autumn is critical and poses a problem for conservation management if the trend for declining rainfall in the region continues. Our simulation modelling for three banksias shows that the probability of co-occurrence is maximal when fire is stochastic around a mean of 13 years, and where fire-proneness and post-fire recruitment success vary in the landscape. Modelling results suggest that non-sprouting banksias could not survive the pre-European frequent-fire scenario suggested by the new grasstree technique for south-western Australia. However, we have yet to fully explore the conservation significance of long-distance dispersal of seeds, recently shown to exceed 2.5 km in B. hookeriana.


Nature Communications | 2017

High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle.

Katharina Brinck; Rico Fischer; Jürgen Groeneveld; Sebastian Lehmann; Mateus Dantas de Paula; Sandro Pütz; Joseph O. Sexton; Dan-Xia Song; Andreas Huth

Deforestation in the tropics is not only responsible for direct carbon emissions but also extends the forest edge wherein trees suffer increased mortality. Here we combine high-resolution (30 m) satellite maps of forest cover with estimates of the edge effect and show that 19% of the remaining area of tropical forests lies within 100 m of a forest edge. The tropics house around 50 million forest fragments and the length of the worlds tropical forest edges sums to nearly 50 million km. Edge effects in tropical forests have caused an additional 10.3 Gt (2.1–14.4 Gt) of carbon emissions, which translates into 0.34 Gt per year and represents 31% of the currently estimated annual carbon releases due to tropical deforestation. Fragmentation substantially augments carbon emissions from tropical forests and must be taken into account when analysing the role of vegetation in the global carbon cycle.


Journal of Applied Ecology | 2008

Simulating the effects of different spatio-temporal fire regimes on plant metapopulation persistence in a Mediterranean-type region

Jürgen Groeneveld; Neal J. Enright; Byron B. Lamont

Spatio-temporal fire regimes are likely to shift with changes in land use and climate. Such a shift in the disturbance regime has been proposed from recent reconstructions of the regional fire history in the Mediterranean-type woodlands and shrublands of Western Australia which suggest that fire was much more frequent before 1930 (local fire intervals of 3–5 years) than it is today (local fire intervals of 8–15 years). To investigate the potential biodiversity consequences of such changes in fire regime for fire-killed woody species, we developed a spatial model for the serotinous shrub Banksia hookeriana that grows on sand dunes of the Eneabba Plain, Western Australia. We sought to identify the envelope of fire regimes under which the spatially separated populations in this species are able to persist, and whether this encompasses the fire regimes proposed by recent fire-history reconstructions. We tested two fire frequency-size distribution scenarios: (1) a scenario where fire size depends on the spatial patch configuration; and (2) a scenario depending also on available fuel (time since last fire), which reduces fire size at short inter-fire intervals. In scenario 1, metapopulation persistence was only likely for mean ignition intervals at the landscape scale of 6 years. In scenario 2, persistence was likely for the whole range of fire interval distributions at the landscape scale suggested by the empirical data. However, persistence was almost impossible if the mean return fire interval at the local scale (i.e. for individual dunes) is < 8 years. Synthesis and applications. We have demonstrated that this plant metapopulation can potentially persist over a wide range of temporal fire regimes at the landscape scale, so long as there are buffering mechanisms at work (e.g. feedback between fire spread and vegetation age) which reduces the probability of large fires at short intervals. Our findings demonstrate that at least some parts of the landscape must burn substantially less frequently on average than suggested by the empirical fire reconstructions for the early and pre-European period if populations of fire-killed woody species such as B. hookeriana are to be conserved.


Nature | 2018

Global patterns of tropical forest fragmentation

Franziska Taubert; Rico Fischer; Jürgen Groeneveld; Sebastian Lehmann; Michael S. Müller; Edna Rödig; Thorsten Wiegand; Andreas Huth

Remote sensing enables the quantification of tropical deforestation with high spatial resolution. This in-depth mapping has led to substantial advances in the analysis of continent-wide fragmentation of tropical forests. Here we identified approximately 130 million forest fragments in three continents that show surprisingly similar power-law size and perimeter distributions as well as fractal dimensions. Power-law distributions have been observed in many natural phenomena such as wildfires, landslides and earthquakes. The principles of percolation theory provide one explanation for the observed patterns, and suggest that forest fragmentation is close to the critical point of percolation; simulation modelling also supports this hypothesis. The observed patterns emerge not only from random deforestation, which can be described by percolation theory, but also from a wide range of deforestation and forest-recovery regimes. Our models predict that additional forest loss will result in a large increase in the total number of forest fragments—at maximum by a factor of 33 over 50 years—as well as a decrease in their size, and that these consequences could be partly mitigated by reforestation and forest protection.


FEMS Microbiology Ecology | 2017

A critical evaluation of ecological indices for the comparative analysis of microbial communities based on molecular datasets

Rico Lucas; Jürgen Groeneveld; Hauke Harms; Karin Johst; Karin Frank; Sabine Kleinsteuber

ABSTRACT In times of global change and intensified resource exploitation, advanced knowledge of ecophysiological processes in natural and engineered systems driven by complex microbial communities is crucial for both safeguarding environmental processes and optimising rational control of biotechnological processes. To gain such knowledge, high‐throughput molecular techniques are routinely employed to investigate microbial community composition and dynamics within a wide range of natural or engineered environments. However, for molecular dataset analyses no consensus about a generally applicable alpha diversity concept and no appropriate benchmarking of corresponding statistical indices exist yet. To overcome this, we listed criteria for the appropriateness of an index for such analyses and systematically scrutinised commonly employed ecological indices describing diversity, evenness and richness based on artificial and real molecular datasets. We identified appropriate indices warranting interstudy comparability and intuitive interpretability. The unified diversity concept based on ‘effective numbers of types’ provides the mathematical framework for describing community composition. Additionally, the Bray‐Curtis dissimilarity as a beta‐diversity index was found to reflect compositional changes. The employed statistical procedure is presented comprising commented R‐scripts and example datasets for user‐friendly trial application. &NA; Graphical Abstract Figure. Generally applicable ecological indices for the statistical analysis of microbial community composition and dynamics based on fingerprinting and NGS datasets are presented warranting interstudy comparability and intuitive interpretability.


Theoretical Ecology | 2011

Low-dimensional trade-offs fail to explain richness and structure in species-rich plant communities

Alexandra Esther; Jürgen Groeneveld; Neal J. Enright; Ben P. Miller; Byron B. Lamont; George L. W. Perry; Britta Tietjen; Florian Jeltsch

Mathematical models and ecological theory suggest that low-dimensional life history trade-offs (i.e. negative correlation between two life history traits such as competition vs. colonisation) may potentially explain the maintenance of species diversity and community structure. In the absence of trade-offs, we would expect communities to be dominated by ‘super-types’ characterised by mainly positive trait expressions. However, it has proven difficult to find strong empirical evidence for such trade-offs in species-rich communities. We developed a spatially explicit, rule-based and individual-based stochastic model to explore the importance of low-dimensional trade-offs. This model simulates the community dynamics of 288 virtual plant functional types (PFTs), each of which is described by seven life history traits. We consider trait combinations that fit into the trade-off concept, as well as super-types with little or no energy constraints or resource limitations, and weak PFTs, which do not exploit resources efficiently. The model is parameterised using data from a fire-prone, species-rich Mediterranean-type shrubland in southwestern Australia. We performed an exclusion experiment, where we sequentially removed the strongest PFT in the simulation and studied the remaining communities. We analysed the impact of traits on performance of PFTs in the exclusion experiment with standard and boosted regression trees. Regression tree analysis of the simulation results showed that the trade-off concept is necessary for PFT viability in the case of weak trait expression combinations such as low seed production or small seeds. However, species richness and diversity can be high despite the presence of super-types. Furthermore, the exclusion of super-types does not necessarily lead to a large increase in PFT richness and diversity. We conclude that low-dimensional trade-offs do not provide explanations for multi-species co-existence contrary to the prediction of many conceptual models.


Nature Ecology and Evolution | 2017

The winter pack-ice zone provides a sheltered but food-poor habitat for larval Antarctic krill

Bettina Meyer; Ulrich Freier; Volker Grimm; Jürgen Groeneveld; Brian P. V. Hunt; Sven E. Kerwath; Rob King; Christine Klaas; E. A. Pakhomov; Klaus M. Meiners; Jessica Melbourne-Thomas; Eugene J. Murphy; Sally E. Thorpe; Dieter Wolf-Gladrow; Lutz Auerswald; Albrecht Götz; Laura Halbach; Simon N. Jarman; So Kawaguchi; Thomas Krumpen; Gernot Nehrke; Robert Ricker; Michael D. Sumner; Mathias Teschke; Rowan Trebilco; I. Noyan Yilmaz

A dominant Antarctic ecological paradigm suggests that winter sea ice is generally the main feeding ground for krill larvae. Observations from our winter cruise to the southwest Atlantic sector of the Southern Ocean contradict this view and present the first evidence that the pack-ice zone is a food-poor habitat for larval development. In contrast, the more open marginal ice zone provides a more favourable food environment for high larval krill growth rates. We found that complex under-ice habitats are, however, vital for larval krill when water column productivity is limited by light, by providing structures that offer protection from predators and to collect organic material released from the ice. The larvae feed on this sparse ice-associated food during the day. After sunset, they migrate into the water below the ice (upper 20 m) and drift away from the ice areas where they have previously fed. Model analyses indicate that this behaviour increases both food uptake in a patchy food environment and the likelihood of overwinter transport to areas where feeding conditions are more favourable in spring.Winter sea ice is thought to provide critical grazing habitat for overwintering Antarctic krill. In contrast, here the authors show that the pack-ice zone is a food-poor habitat, but does serve as an important sheltering ground for developing larvae.


Journal of the Royal Society Interface | 2016

Monodominance in tropical forests: modelling reveals emerging clusters and phase transitions

Martin Kazmierczak; Pia Backmann; José M. Fedriani; Rico Fischer; Alexander K. Hartmann; Andreas Huth; Felix May; Michael S. Müller; Franziska Taubert; Volker Grimm; Jürgen Groeneveld

Tropical forests are highly diverse ecosystems, but within such forests there can be large patches dominated by a single tree species. The myriad presumed mechanisms that lead to the emergence of such monodominant areas is currently the subject of intensive research. We used the most generic of these mechanisms, large seed mass and low dispersal ability of the monodominant species, in a spatially explicit model. The model represents seven identical species with long-distance dispersal of small seeds, competing with one potentially monodominant species with short-distance dispersal of large seeds. Monodominant patches emerged and persisted only for a narrow range of species traits; these results have the characteristic features of phase transitions. Additional mechanisms may explain monodominance in different ecological contexts, but our results suggest that percolation-like phenomena and phase transitions might be pervasive in this type of system.


PLOS ONE | 2013

Species-specific traits plus stabilizing processes best explain coexistence in biodiverse fire-prone plant communities

Jürgen Groeneveld; Neal J. Enright; Byron B. Lamont; Björn Reineking; Karin Frank; George L. W. Perry

Coexistence in fire-prone Mediterranean-type shrublands has been explored in the past using both neutral and niche-based models. However, distinct differences between plant functional types (PFTs), such as fire-killed vs resprouting responses to fire, and the relative similarity of species within a PFT, suggest that coexistence models might benefit from combining both neutral and niche-based (stabilizing) approaches. We developed a multispecies metacommunity model where species are grouped into two PFTs (fire-killed vs resprouting) to investigate the roles of neutral and stabilizing processes on species richness and rank-abundance distributions. Our results show that species richness can be maintained in two ways: i) strictly neutral species within each PFT, or ii) species within PFTs differing in key demographic properties, provided that additional stabilizing processes, such as negative density regulation, also operate. However, only simulations including stabilizing processes resulted in structurally realistic rank-abundance distributions over plausible time scales. This result underscores the importance of including both key species traits and stabilizing (niche) processes in explaining species coexistence and community structure.


Archive | 2012

Spatial Distribution of Plant Functional Types Along Stress Gradients – A Simulation Study Orientated Towards the Plant Succession on the Desiccating Aral Sea Floor

Jürgen Groeneveld; W. Wucherer; L. A. Dimeyeva; Florian Jeltsch; Christian Wissel; S-W. Breckle

We have developed a simulation model orientated towards the ecological situation of the eastern coast of the Large Aral Sea to gain a better understanding of the unique primary succession on the huge desiccated area of the former Aral Sea. The simulation arena represents a transect of 6 km following the direction of the receding seawater. The environmental conditions in the model change along this transect, reflecting the increasing salt and inundation stress. Plant functional types (PFTs) are used instead of species. They are characterized by their life form (perennial, annual), maximum seed dispersal distance (500–1,000 m) and stress tolerance. We have performed simulation experiments for different modes of seed dispersal (global seed bank versus local dispersal) and have changed the spatial scale of environmental heterogeneity to investigate their impact on the PFT diversity of the system. We have found that a finite dispersal potential is essential for coexistence of PFTs and that diversity is highest for a moderate scale of environmental heterogeneity. Our findings highlight the importance of the explicit consideration of space in multispecies studies and ecological theory.

Collaboration


Dive into the Jürgen Groeneveld's collaboration.

Top Co-Authors

Avatar

Volker Grimm

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mathias Teschke

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. A. Pakhomov

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gernot Nehrke

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar

Thomas Krumpen

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar

Ulrich Freier

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge