Jürgen Sattelkow
Graz University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jürgen Sattelkow.
ACS Applied Materials & Interfaces | 2015
Thomas Ganner; Stephanie Roŝker; Manuel Eibinger; Johanna Kraxner; Jürgen Sattelkow; Johannes Rattenberger; Harald Matthias Fitzek; Boril Chernev; Werner Grogger; Bernd Nidetzky; Harald Plank
In the field of enzymatic cellulose degradation, fundamental interactions between different enzymes and polymorphic cellulose materials are of essential importance but still not understood in full detail. One technology with the potential of direct visualization of such bioprocesses is atomic force microscopy (AFM) due to its capability of real-time in situ investigations with spatial resolutions down to the molecular scale. To exploit the full capabilities of this technology and unravel fundamental enzyme-cellulose bioprocesses, appropriate cellulose substrates are decisive. In this study, we introduce a semicrystalline-thin-film-cellulose (SCFTC) substrate which fulfills the strong demands on such ideal cellulose substrates by means of (1) tunable polymorphism via variable contents of homogeneously sized cellulose nanocrystals embedded in an amorphous cellulose matrix; (2) nanoflat surface topology for high-resolution and high-speed AFM; and (3) fast, simple, and reproducible fabrication. The study starts with a detailed description of SCTFC preparation protocols including an in-depth material characterization. In the second part, we demonstrate the suitability of SCTFC substrates for enzymatic degradation studies by combined, individual, and sequential exposure to TrCel6A/TrCel7A cellulases (Trichoderma reesei) to visualize synergistic effects down to the nanoscale.
Angewandte Chemie | 2017
Anna Eibel; David E. Fast; Jürgen Sattelkow; Michal Zalibera; Jieping Wang; Alex Huber; Georgina Müller; Dmytro Neshchadin; Kurt Dietliker; Harald Plank; Hansjörg Grützmacher; Georg Gescheidt
Star-shaped polymers represent highly desired materials in nanotechnology and life sciences, including biomedical applications (e.g., diagnostic imaging, tissue engineering, and targeted drug delivery). Herein, we report a straightforward synthesis of wavelength-selective multifunctional photoinitiators (PIs) that contain a bisacylphosphane oxide (BAPO) group and an α-hydroxy ketone moiety within one molecule. By using three different wavelengths, these photoactive groups can be selectively addressed and activated, thereby allowing the synthesis of ABC-type miktoarm star polymers through a simple, highly selective, and robust free-radical polymerization method. The photochemistry of these new initiators and the feasibility of this concept were investigated in unprecedented detail by using various spectroscopic techniques.
Biomacromolecules | 2017
Katrin Niegelhell; Michael Suessenbacher; Jürgen Sattelkow; Harald Plank; Yonggui Wang; Kai Zhang; Stefan Spirk
The effect of fatty acids and fatty acid esters to impair nonspecific protein adsorption on cellulose thin films is investigated. Thin films are prepared by blending trimethylsilyl cellulose solutions with either cellulose stearoyl ester or stearic acid at various ratios. After film formation by spin coating, the trimethylsilyl cellulose fraction of the films is converted to cellulose by exposure to HCl vapors. The morphologies and surface roughness of the blends were examined by atomic force microscopy revealing different feature shapes and sizes depending on the blend ratios. Nonspecific protein adsorption at the example of bovine serum albumin toward the blend thin films was tested by means of surface plasmon resonance spectroscopy in real-time. Incorporation of stearic acid into the cellulose leads to highly protein repellent surfaces regardless of the amount added. The stearic acid acts as a sacrificial compound that builds a complex with bovine serum albumin thereby inhibiting protein adsorption. For the blends where stearoyl ester is added to the cellulose films, the cellulose:cellulose stearoyl ester ratios of 3:1 and 1:1 lead to much lower nonspecific protein adsorption compared to pure cellulose, whereas for the other ratios, adsorption increases. Supplementary results were obtained from atomic force microscopy experiments performed in liquid during exposure to protein solution and surface free energy determinations.
Scientific Reports | 2016
Thomas Ganner; Jürgen Sattelkow; Bernhard Rumpf; Manuel Eibinger; David Reishofer; Robert Winkler; Bernd Nidetzky; Stefan Spirk; Harald Plank
In many areas of science and technology, patterned films and surfaces play a key role in engineering and development of advanced materials. Here, we introduce a new generic technique for the fabrication of polysaccharide nano-structures via focused electron beam induced conversion (FEBIC). For the proof of principle, organosoluble trimethylsilyl-cellulose (TMSC) thin films have been deposited by spin coating on SiO2 / Si and exposed to a nano-sized electron beam. It turns out that in the exposed areas an electron induced desilylation reaction takes place converting soluble TMSC to rather insoluble cellulose. After removal of the unexposed TMSC areas, structured cellulose patterns remain on the surface with FWHM line widths down to 70 nm. Systematic FEBIC parameter sweeps reveal a generally electron dose dependent behavior with three working regimes: incomplete conversion, ideal doses and over exposure. Direct (FT-IR) and indirect chemical analyses (enzymatic degradation) confirmed the cellulosic character of ideally converted areas. These investigations are complemented by a theoretical model which suggests a two-step reaction process by means of TMSC → cellulose and cellulose → non-cellulose material conversion in excellent agreement with experimental data. The extracted, individual reaction rates allowed the derivation of design rules for FEBIC parameters towards highest conversion efficiencies and highest lateral resolution.
Carbohydrate Polymers | 2019
Michael Weißl; Thomas Rath; Jürgen Sattelkow; Harald Plank; Samuel Eyley; Wim Thielemans; Gregor Trimmel; Stefan Spirk
A generic procedure for the manufacturing of cellulose-metal sulfide multilayered sandwich type thin films is demonstrated at the example of copper indium sulfide. These multilayers were created by alternate spin coating steps of precursors, followed by their conversion using either acidic vapors, or heat treatment. As precursors, cellulose xanthate, a widely available cellulose derivative employed in viscose fiber manufacturing and commercial copper and indium xanthates were used. After conversion of the single layers into cellulose and copper indium sulfide, the film properties (structure, thickness, photoelectric activity) of the single and multilayer systems consisting of alternate layers of cellulose and copper indium sulfide were studied. For the proof of concept, up to five layers were built up, showing a clear separation of the cellulose and the metal sulfide layers as demonstrated using cross sectional analysis using ion slope beam cutting and SEM imaging. Finally, the conversion of xanthates was performed using UV light and a mask, allowing for the creation of 2D patterns.
Biotechnology for Biofuels | 2016
Manuel Eibinger; Karin Sigl; Jürgen Sattelkow; Thomas Ganner; Jonas Ramoni; Bernhard Seiboth; Harald Plank; Bernd Nidetzky
Nature Communications | 2017
Manuel Eibinger; Jürgen Sattelkow; Thomas Ganner; Harald Plank; Bernd Nidetzky
Archive | 2018
Krisztina Zajki-Zechmeister; Werner Schlemmer; Stefan Spirk; Jürgen Sattelkow; Harald Plank
Microscopy and Microanalysis | 2018
Jürgen Sattelkow; Johannes E. Froech; Robert Winkler; Christian Schwalb; Marcel Winhold; Ernest G. Fantner; Harald Plank
Microscopy and Microanalysis | 2018
Harald Plank; Robert Winkler; Jürgen Sattelkow; Jason D. Fowlkes; Philip D. Rack