Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jurgen Vercruysse is active.

Publication


Featured researches published by Jurgen Vercruysse.


European Journal of Pharmaceutics and Biopharmaceutics | 2012

Continuous twin screw granulation: Influence of process variables on granule and tablet quality

Jurgen Vercruysse; D. Córdoba Díaz; Elisabeth Peeters; Margot Fonteyne; U. Delaet; I. Van Assche; T. De Beer; Jean Paul Remon; Chris Vervaet

The aim of the current study was to screen theophylline (125 mg) tablets manufactured via twin screw granulation in order to improve process understanding and knowledge of process variables that determine granule and tablet quality. A premix of theophylline anhydrate, α-lactose monohydrate and PVP (ratio: 30/67.5/2.5,w/w) was granulated with demineralized water. Experiments were done using the high-shear wet granulation module (based on twin screw granulation) of the ConsiGma™-25 unit (a continuous tablet manufacturing system) for particle size enlargement. After drying, granules were compressed using a MODUL™ P tablet press (compression force: 10 kN, tablet diameter: 12 mm). Using a D-optimal experimental design, the effect of several process variables (throughput (10-25 kg/h), screw speed (600-950 rpm), screw configuration (number (2, 4, 6 and 12) and angle (30°, 60° and 90°) of kneading elements), barrel temperature (25-40°C) and method of binder addition (dry versus wet)) on the granulation process (torque and temperature increase in barrel wall), granule (particle size distribution, friability and flowability) and tablet (tensile strength, porosity, friability, disintegration time and dissolution) quality was evaluated. The results showed that the quality of granules and tablets can be optimized by adjusting specific process variables (number of kneading elements, barrel temperature and binder addition method) during a granulation process using a continuous twin screw granulator.


Pharmaceutical Development and Technology | 2013

Real-time assessment of critical quality attributes of a continuous granulation process

Margot Fonteyne; Jurgen Vercruysse; Damián Córdoba Díaz; Delphine Gildemyn; Chris Vervaet; Jean Paul Remon; Thomas De Beer

There exists the intention to shift pharmaceutical manufacturing of solid dosage forms from traditional batch production towards continuous production. The currently applied conventional quality control systems, based on sampling and time-consuming off-line analyses in analytical laboratories, would annul the advantages of continuous processing. It is clear that real-time quality assessment and control is indispensable for continuous production. This manuscript evaluates strengths and weaknesses of several complementary Process Analytical Technology (PAT) tools implemented in a continuous wet granulation process, which is part of a fully continuous from powder-to-tablet production line. The use of Raman and NIR-spectroscopy and a particle size distribution analyzer is evaluated for the real-time monitoring of critical parameters during the continuous wet agglomeration of an anhydrous theophylline− lactose blend. The solid state characteristics and particle size of the granules were analyzed in real-time and the critical process parameters influencing these granule characteristics were identified. The temperature of the granulator barrel, the amount of granulation liquid added and, to a lesser extent, the powder feed rate were the parameters influencing the solid state of the active pharmaceutical ingredient (API). A higher barrel temperature and a higher powder feed rate, resulted in larger granules.


European Journal of Pharmaceutics and Biopharmaceutics | 2014

Visualization and understanding of the granulation liquid mixing and distribution during continuous twin screw granulation using NIR chemical imaging.

Jurgen Vercruysse; Maunu Toiviainen; Margot Fonteyne; Niko Helkimo; Jarkko Ketolainen; Mikko Juuti; Urbain Alfons C. Delaet; Ivo Van Assche; Jean Paul Remon; Chris Vervaet; Thomas De Beer

Over the last decade, there has been increased interest in the application of twin screw granulation as a continuous wet granulation technique for pharmaceutical drug formulations. However, the mixing of granulation liquid and powder material during the short residence time inside the screw chamber and the atypical particle size distribution (PSD) of granules produced by twin screw granulation is not yet fully understood. Therefore, this study aims at visualizing the granulation liquid mixing and distribution during continuous twin screw granulation using NIR chemical imaging. In first instance, the residence time of material inside the barrel was investigated as function of screw speed and moisture content followed by the visualization of the granulation liquid distribution as function of different formulation and process parameters (liquid feed rate, liquid addition method, screw configuration, moisture content and barrel filling degree). The link between moisture uniformity and granule size distributions was also studied. For residence time analysis, increased screw speed and lower moisture content resulted to a shorter mean residence time and narrower residence time distribution. Besides, the distribution of granulation liquid was more homogenous at higher moisture content and with more kneading zones on the granulator screws. After optimization of the screw configuration, a two-level full factorial experimental design was performed to evaluate the influence of moisture content, screw speed and powder feed rate on the mixing efficiency of the powder and liquid phase. From these results, it was concluded that only increasing the moisture content significantly improved the granulation liquid distribution. This study demonstrates that NIR chemical imaging is a fast and adequate measurement tool for allowing process visualization and hence for providing better process understanding of a continuous twin screw granulation system.


International Journal of Pharmaceutics | 2015

Impact of screw configuration on the particle size distribution of granules produced by twin screw granulation.

Jurgen Vercruysse; A. Burggraeve; Margot Fonteyne; Philippe Cappuyns; U. Delaet; I. Van Assche; T. De Beer; J.P. Remon; Chris Vervaet

Twin screw granulation (TSG) has been reported by different research groups as an attractive technology for continuous wet granulation. However, in contrast to fluidized bed granulation, granules produced via this technique typically have a wide and multimodal particle size distribution (PSD), resulting in suboptimal flow properties. The aim of the current study was to evaluate the impact of granulator screw configuration on the PSD of granules produced by TSG. Experiments were performed using a 25 mm co-rotating twin screw granulator, being part of the ConsiGma™-25 system (a fully continuous from-powder-to-tablet manufacturing line from GEA Pharma Systems). Besides the screw elements conventionally used for TSG (conveying and kneading elements), alternative designs of screw elements (tooth-mixing-elements (TME), screw mixing elements (SME) and cutters) were investigated using an α-lactose monohydrate formulation granulated with distilled water. Granulation with only conveying elements resulted in wide and multimodal PSD. Using kneading elements, the width of the PSD could be partially narrowed and the liquid distribution was more homogeneous. However, still a significant fraction of oversized agglomerates was obtained. Implementing additional kneading elements or cutters in the final section of the screw configuration was not beneficial. Furthermore, granulation with only TME or SME had limited impact on the width of the PSD. Promising results were obtained by combining kneading elements with SME, as for these configurations the PSD was narrower and shifted to the size fractions suitable for tableting.


European Journal of Pharmaceutical Sciences | 2015

Conceptual framework for model-based analysis of residence time distribution in twin-screw granulation

Ashish Kumar; Jurgen Vercruysse; Valérie Vanhoorne; Maunu Toiviainen; Pierre-Emmanuel Panouillot; Mikko Juuti; Chris Vervaet; Jean Paul Remon; Krist V. Gernaey; Thomas De Beer; Ingmar Nopens

Twin-screw granulation is a promising continuous alternative for traditional batchwise wet granulation processes. The twin-screw granulator (TSG) screws consist of transport and kneading element modules. Therefore, the granulation to a large extent is governed by the residence time distribution within each module where different granulation rate processes dominate over others. Currently, experimental data is used to determine the residence time distributions. In this study, a conceptual model based on classical chemical engineering methods is proposed to better understand and simulate the residence time distribution in a TSG. The experimental data were compared with the proposed most suitable conceptual model to estimate the parameters of the model and to analyse and predict the effects of changes in number of kneading discs and their stagger angle, screw speed and powder feed rate on residence time. The study established that the kneading block in the screw configuration acts as a plug-flow zone inside the granulator. Furthermore, it was found that a balance between the throughput force and conveying rate is required to obtain a good axial mixing inside the twin-screw granulator. Although the granulation behaviour is different for other excipients, the experimental data collection and modelling methods applied in this study are generic and can be adapted to other excipients.


International Journal of Pharmaceutics | 2017

Continuous direct compression as manufacturing platform for sustained release tablets

B. Van Snick; J. Holman; C. Cunningham; Ashish Kumar; Jurgen Vercruysse; T. De Beer; Jean Paul Remon; Chris Vervaet

This study presents a framework for process and product development on a continuous direct compression manufacturing platform. A challenging sustained release formulation with high content of a poorly flowing low density drug was selected. Two HPMC grades were evaluated as matrix former: standard Methocel CR and directly compressible Methocel DC2. The feeding behavior of each formulation component was investigated by deriving feed factor profiles. The maximum feed factor was used to estimate the drive command and depended strongly upon the density of the material. Furthermore, the shape of the feed factor profile allowed definition of a customized refill regime for each material. Inline NIRs was used to estimate the residence time distribution (RTD) in the mixer and monitor blend uniformity. Tablet content and weight variability were determined as additional measures of mixing performance. For Methocel CR, the best axial mixing (i.e. feeder fluctuation dampening) was achieved when an impeller with high number of radial mixing blades operated at low speed. However, the variability in tablet weight and content uniformity deteriorated under this condition. One can therefore conclude that balancing axial mixing with tablet quality is critical for Methocel CR. However, reformulating with the direct compressible Methocel DC2 as matrix former improved tablet quality vastly. Furthermore, both process and product were significantly more robust to changes in process and design variables. This observation underpins the importance of flowability during continuous blending and die-filling. At the compaction stage, blends with Methocel CR showed better tabletability driven by a higher compressibility as the smaller CR particles have a higher bonding area. However, tablets of similar strength were achieved using Methocel DC2 by targeting equal porosity. Compaction pressure impacted tablet properties and dissolution. Hence controlling thickness during continuous manufacturing of sustained release tablets was crucial to ensure reproducible dissolution.


International Journal of Pharmaceutics | 2014

Experimental investigation of granule size and shape dynamics in twin-screw granulation

Ashish Kumar; Jurgen Vercruysse; Giacomo Bellandi; Krist V. Gernaey; Chris Vervaet; Jean Paul Remon; Thomas De Beer; Ingmar Nopens

A twin-screw granulator (TSG), a promising equipment for continuous high shear wet granulation (HSWG), achieves the desired level of mixing by a combination of the appropriate screw configuration and a suitable set of process settings (e.g. feed rate, screw speed, etc.), thus producing a certain granule size and shape distribution (GSSD). However, the primary sizing and shaping mechanism behind the resulting distribution is not well understood due to the opacity of the multiphase system in the granulator. This study experimentally characterised the GSSD dynamics along the TSG barrel length in order to understand the function of individual screw modules and process settings, as well as their interaction. Particle size analysis of granules collected at the outlet of the TSG suggested significant interaction between the process and screw configuration parameters influencing the heterogeneity in the GSSD. By characterising the samples collected along the screw length, a variable influence of the screw modules at different process conditions was observed. At low liquid-to-solid ratio (L/S), the first kneading module seemed to play a significant role in mixing, whereas the second kneading module was found to be more involved in reshaping the granules. At high L/S and high throughput, aggregation mainly took place in the second kneading module changing the GSSD. The results obtained from this study will be further used for the calibration and validation of a mechanistic model and, hence, support future development of a more detailed understanding of the HSWG process in a TSG.


European Journal of Pharmaceutics and Biopharmaceutics | 2012

Mechanistic modelling of the drying behaviour of single pharmaceutical granules.

Séverine Mortier; Thomas De Beer; Krist V. Gernaey; Jurgen Vercruysse; Margot Fonteyne; Jean Paul Remon; Chris Vervaet; Ingmar Nopens

The trend to move towards continuous production processes in pharmaceutical applications enhances the necessity to develop mechanistic models to understand and control these processes. This work focuses on the drying behaviour of a single wet granule before tabletting, using a six-segmented fluidised bed drying system, which is part of a fully continuous from-powder-to-tablet manufacturing line. The drying model is based on a model described by Mezhericher et al. and consists of two submodels. In the first drying phase (submodel 1), the surface water evaporates, while in the second drying phase (submodel 2), the water inside the granule evaporates. The second submodel contains an empirical power coefficient, β. A sensitivity analysis was performed to study the influence of parameters on the moisture content of single pharmaceutical granules, which clearly points towards the importance of β on the drying behaviour. Experimental data with the six-segmented fluidised bed dryer were collected to calibrate β. An exponential dependence on the drying air temperature was found. Independent experiments were done for the validation of the drying model.


European Journal of Pharmaceutics and Biopharmaceutics | 2015

Use of a continuous twin screw granulation and drying system during formulation development and process optimization

Jurgen Vercruysse; Elisabeth Peeters; Margot Fonteyne; Philippe Cappuyns; Urbain Alfons C. Delaet; I. Van Assche; T. De Beer; J.P. Remon; Chris Vervaet

Since small scale is key for successful introduction of continuous techniques in the pharmaceutical industry to allow its use during formulation development and process optimization, it is essential to determine whether the product quality is similar when small quantities of materials are processed compared to the continuous processing of larger quantities. Therefore, the aim of this study was to investigate whether material processed in a single cell of the six-segmented fluid bed dryer of the ConsiGma™-25 system (a continuous twin screw granulation and drying system introduced by GEA Pharma Systems, Collette™, Wommelgem, Belgium) is predictive of granule and tablet quality during full-scale manufacturing when all drying cells are filled. Furthermore, the performance of the ConsiGma™-1 system (a mobile laboratory unit) was evaluated and compared to the ConsiGma™-25 system. A premix of two active ingredients, powdered cellulose, maize starch, pregelatinized starch and sodium starch glycolate was granulated with distilled water. After drying and milling (1000 μm, 800 rpm), granules were blended with magnesium stearate and compressed using a Modul™ P tablet press (tablet weight: 430 mg, main compression force: 12 kN). Single cell experiments using the ConsiGma™-25 system and ConsiGma™-1 system were performed in triplicate. Additionally, a 1h continuous run using the ConsiGma™-25 system was executed. Process outcomes (torque, barrel wall temperature, product temperature during drying) and granule (residual moisture content, particle size distribution, bulk and tapped density, hausner ratio, friability) as well as tablet (hardness, friability, disintegration time and dissolution) quality attributes were evaluated. By performing a 1h continuous run, it was detected that a stabilization period was needed for torque and barrel wall temperature due to initial layering of the screws and the screw chamber walls with material. Consequently, slightly deviating granule and tablet quality attributes were obtained during the start-up phase of the 1h run. For the single cell runs, granule and tablet properties were comparable with results obtained during the second part of the 1h run (after start-up). Although deviating granule quality (particle size distribution and Hausner ratio) was observed due to the divergent design of the ConsiGma™-1 unit and the ConsiGma™-25 system (horizontal set-up) used in this study, tablet quality produced from granules processed with the ConsiGma™-1 system was predictive for tablet quality obtained during continuous production using the ConsiGma™-25 system.


International Journal of Pharmaceutics | 2016

Development of a controlled release formulation by continuous twin screw granulation: Influence of process and formulation parameters.

Valérie Vanhoorne; Brecht Vanbillemont; Jurgen Vercruysse; F. De Leersnyder; P. Gomes; T. De Beer; J.P. Remon; Chris Vervaet

The aim of this study was to evaluate the potential of twin screw granulation for the continuous production of controlled release formulations with hydroxypropylmethylcellulose as hydrophilic matrix former. Metoprolol tartrate was included in the formulation as very water soluble model drug. A premix of metoprolol tartrate, hydroxypropylmethylcellulose and filler (ratio 20/20/60, w/w) was granulated with demineralized water via twin screw granulation. After oven drying and milling, tablets were produced on a rotary Modul™ P tablet press. A D-optimal design (29 experiments) was used to assess the influence of process (screw speed, throughput, barrel temperature and screw design) and formulation parameters (starch content of the filler) on the process (torque), granule (size distribution, shape, friability, density) and tablet (hardness, friability and dissolution) critical quality attributes. The torque was dominated by the number of kneading elements and throughput, whereas screw speed and filling degree only showed a minor influence on torque. Addition of screw mixing elements after a block of kneading elements improved the yield of the process before milling as it resulted in less oversized granules and also after milling as less fines were present. Temperature was also an important parameter to optimize as a higher temperature yielded less fines and positively influenced the aspect ratio. The shape of hydroxypropylmethylcellulose granules was comparable to that of immediate release formulations. Tensile strength and friability of tablets were not dependent on the process parameters. The use of starch as filler was not beneficial with regard to granule and tablet properties. Complete drug release was obtained after 16-20h and was independent of the designs parameters.

Collaboration


Dive into the Jurgen Vercruysse's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Krist V. Gernaey

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge