Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jurgen W. G. E. VanTeeffelen is active.

Publication


Featured researches published by Jurgen W. G. E. VanTeeffelen.


Hypertension | 2007

Heparin Impairs Glycocalyx Barrier Properties and Attenuates Shear Dependent Vasodilation in Mice

Jurgen W. G. E. VanTeeffelen; Judith Brands; Carin Jansen; Jos A. E. Spaan; Hans Vink

The endothelial glycocalyx is a hydrated mesh of polysaccharides and adsorbed plasma proteins that forms the true interface between the flowing blood and the endothelium. We hypothesized in the present study that competitive binding of heparin to glycocalyx-associated proteins would affect glycocalyx barrier properties and mechanotransduction of shear stress to the endothelium. In anesthetized mice, the clearance of 70-kDa dextrans from the circulation was increased (P<0.05 versus saline) 1 hour after heparin (1.25 U) and glycocalyx degradation with hyaluronidase (35 U; amount cleared in 30 minutes after saline: 11±5%; after heparin: 45±8%; after hyaluronidase: 30±3%). Clearance of 40-kDa dextrans increased (P<0.05 versus saline) to a lesser extent after both treatments (saline: 46±3%; heparin: 60±5%; hyaluronidase: 60±2%). The dilator response of second-order arterioles in cremaster muscle during reactive hyperemia was reduced for ≤90 minutes after heparin as reflected by a decrease (P=0.008) in t50 of diameter recovery, and this effect was associated with a diminished NO bioavailability. Infusion of hyaluronidase resulted in reductions (P<0.05) in baseline and peak reactive hyperemic diameter, whereas, despite an increase in wall shear rate at the beginning of reactive hyperemia, t50 of diameter recovery was not affected. In conclusion, our data in mice show that a heparin challenge is associated with increased vascular leakage of dextrans and impaired arteriolar vasodilation during reactive hyperemia. Our data suggest that protein–heparan sulfate interactions are important for a functional glycocalyx.


Cardiovascular Research | 2010

Agonist-induced impairment of glycocalyx exclusion properties: contribution to coronary effects of adenosine

Jurgen W. G. E. VanTeeffelen; Judith Brands; Hans Vink

The endothelial glycocalyx is the negatively charged, gel-like mesh residing at the luminal side of the vascular endothelium and forming the interface between the flowing blood and the vessel wall. The vast majority of glycocalyx volume resides in the microcirculation, particularly in the capillaries. Intravital microscopic observations of capillaries in striated muscle preparations illustrate that under resting conditions, the glycocalyx is not accessible for flowing red blood cells and greatly hinders plasma flow in the axial direction, causing a significant reduction in functionally perfused capillary volume. Glycocalyx exclusion properties have been shown to be reduced by adenosine and other vasoactive substances. A diminished exclusion of circulating blood by the glycocalyx may facilitate nutrient exchange since it is associated with an increase in functionally perfused blood volume and surface area in the capillaries. Our recent studies have focused on the effect of adenosine on glycocalyx exclusion in the coronary circulation and demonstrate an important role for this mechanism in the increase in circulating coronary blood volume during administration of this vasodilator. The current review elaborates on the glycocalyx as a blood-excluding intravascular layer and how it can be modulated by various agonists. Further, the potential role of adenosine-induced modulation of glycocalyx exclusion properties in coupling increases in blood flow and circulating blood volume in the coronary circulation is discussed. Finally, we consider how degradation of the glycocalyx may impact on coronary blood volume regulation, thereby providing new opportunities to diagnose glycocalyx damage in the clinical setting.


The Journal of Physiology | 2008

Bradykinin‐ and sodium nitroprusside‐induced increases in capillary tube haematocrit in mouse cremaster muscle are associated with impaired glycocalyx barrier properties

Jurgen W. G. E. VanTeeffelen; Alina A. Constantinescu; Judith Brands; Jos A. E. Spaan; Hans Vink

Previous studies have suggested that agonists may increase functionally perfused capillary volume by modulation of blood‐excluding glycocalyx volume, but direct evidence for this association is lacking at the moment. Using intravital microscopic visualization of mouse cremaster muscle, we determined the effects of bradykinin (10−5m) and sodium nitroprusside (10−6m) on capillary tube haematocrit and glycocalyx barrier properties. In control C57Bl/6 mice (n= 10), tube haematocrit in capillaries (n= 71) increased (P < 0.05) from 8.7 ± 0.3% during baseline to 21.2 ± 1.2 and 22.2 ± 0.9% during superfusion with bradykinin and nitroprusside, respectively. In parallel, the exclusion zone of FITC‐labelled 70 kDa dextrans decreased (P < 0.05) from 0.37 ± 0.01 μm during baseline to 0.17 ± 0.01 μm with bradykinin and 0.15 ± 0.01 μm with nitroprusside. Bradykinin and nitroprusside had no effect on dextran exclusion and tube haematocrit in capillaries (n= 55) of hyperlipidemic ApoE3‐Leiden mice, which showed impaired exclusion of 70 kDa dextrans (0.05 ± 0.02 μm; P < 0.05 versus C57Bl/6) and increased capillary tube haematocrit (23 ± 0.8%; P < 0.05 versus C57Bl/6) under baseline conditions, indicating glycocalyx degradation. Our data show that vasodilator substances increase functionally perfused capillary volume and that this effect is associated with a reduction in glycocalyx exclusion of 70 kDa dextrans. Modulation of glycocalyx volume might represent a novel mechanism of perfusion control at the capillary level.


Thrombosis and Haemostasis | 2010

Degradation of the endothelial glycocalyx is associated with chylomicron leakage in mouse cremaster muscle microcirculation

A.A. Constantinescu; Jos A. E. Spaan; E.K. Arkenbout; Hans Vink; Jurgen W. G. E. VanTeeffelen

A thick endothelial glycocalyx contributes to the barrier function of vascular endothelium in macro- and microcirculation. We hypothesised in the current study that diet-induced hyperlipidaemia perturbs the glycocalyx, resulting in decreased dimensions of this layer and increased transendothelial lipoprotein leakage in capillaries. Glycocalyx thickness was measured in mouse cremaster muscle capillaries by intravital microscopy from the distance between flowing red blood cells and the endothelial surface. In control C57BL/6 mice on standard chow, glycocalyx thickness measured 0.58 ± 0.01 (mean ± SEM) μm, and no lipoproteins were observed in the tissue. After three months administration of an either mild or severe high-fat / high-cholesterol diet (HFC) to C57BL/6 and ApoE3-Leiden mice, circulating large lipoproteins appeared into the subendothelial space in an increasing proportion of cremaster capillaries, and these capillaries displayed reduced glycocalyx dimensions of 0.40 ± 0.02 and 0.30 ± 0.01 μm (C57BL/6 mice), and 0.37 ± 0.01 and 0.28 ± 0.01 μm (ApoE3-Leiden mice), after the mild and severe HFC diet, respectively. The chylomicron nature of the accumulated lipoproteins was confirmed by observations of subendothelial deposition of DiI-labeled chylomicrons in capillaries after inducing acute glycocalyx degradation by heparitinase in normolipidaemic C57BL/6 mice. It is concluded that while under control conditions the endothelial glycocalyx contributes to the vascular barrier against transvascular lipoprotein leakage in the microcirculation, diet-induced hyperlipidaemia reduces the thickness of the glycocalyx, thereby facilitating leakage of chylomicrons across the capillary wall.


PLOS ONE | 2013

Rapid Insulin-Mediated Increase in Microvascular Glycocalyx Accessibility in Skeletal Muscle May Contribute to Insulin-Mediated Glucose Disposal in Rats

Bart Eskens; Hans L. Mooij; Jack P.M. Cleutjens; Jozef M. A. Roos; Johanna E. Cobelens; Hans Vink; Jurgen W. G. E. VanTeeffelen

It has been demonstrated that insulin-mediated recruitment of microvascular blood volume is associated with insulin sensitivity. We hypothesize that insulin rapidly stimulates penetration of red blood cells (RBC) and plasma into the glycocalyx and thereby promotes insulin-mediated glucose uptake by increasing intracapillary blood volume. Experiments were performed in rats; the role of the glycocalyx was assessed by enzymatic degradation using a bolus of hyaluronidase. First, the effect of insulin on glycocalyx accessibility was assessed by measuring the depth of penetration of RBCs into the glycocalyx in microvessels of the gastrocnemius muscle with Sidestream Dark-field imaging. Secondly, peripheral insulin sensitivity was determined using intravenous insulin tolerance tests (IVITT). In addition, in a smaller set of experiments, intravital microscopy of capillary hemodynamics in cremaster muscle and histological analysis of the distribution of fluorescently labeled 40 kDa dextrans (D40) in hindlimb muscle was used to evaluate insulin-mediated increases in capillary blood volume. Insulin increased glycocalyx penetration of RBCs by 0.34±0.44 µm (P<0.05) within 10 minutes, and this effect of insulin was greatly impaired in hyaluronidase treated rats. Further, hyaluronidase treated rats showed a 35±25% reduction in whole-body insulin-mediated glucose disposal compared to control rats. Insulin-mediated increases in capillary blood volume were reflected by a rapid increase in capillary tube hematocrit from 21.1±10.1% to 29.0±9.8% (P<0.05), and an increase in D40 intensity in individual capillaries of 134±138% compared to baseline at the end of the IVITT. These effects of insulin were virtually abolished in hyaluronidase treated animals. In conclusion, insulin rapidly increases glycocalyx accessibility for circulating blood in muscle, and this is associated with an increased blood volume in individual capillaries. Hyaluronidase treatment of the glycocalyx abolishes the effects of insulin on capillary blood volume and impairs insulin-mediated glucose disposal.


American Journal of Physiology-heart and Circulatory Physiology | 2010

Acute attenuation of glycocalyx barrier properties increases coronary blood volume independently of coronary flow reserve

Judith Brands; Jos A. E. Spaan; Bernard M. van den Berg; Hans Vink; Jurgen W. G. E. VanTeeffelen

Vascular endothelium is covered with an extensive mesh of glycocalyx constituents, which acts like an effective barrier up to several micrometers thick that shields the luminal surface of the vasculature from direct exposure to flowing blood. Many studies report that various enzymatic and pharmaceutical challenges are able to increase glycocalyx porosity, resulting in farther permeation of plasma macromolecules and greater access of red blood cells into glycocalyx domain. Attenuation of glycocalyx barrier properties therefore potentially increases the amount of blood that effectively occupies available microvascular volume. We tested in the present study whether attenuation of coronary glycocalyx barrier properties actually increases coronary blood volume and whether such changes would be noticeable during measurements of coronary flow reserve using adenosine. In anesthetized goats (n = 6) with cannulated left main coronary artery that were perfused under controlled pressure, coronary blood volume was measured via the indicator-dilution technique using high-molecular-weight (2,000 kDa) dextrans as plasma tracer and labeled red blood cells as red blood cell tracer. Coronary blood volume was determined at baseline and during intracoronary infusion of adenosine causing maximal vasodilation (0.2-0.6 mg.kg(-1).h(-1)) before and after intracoronary hyaluronidase treatment (170,000 units) of the glycocalyx. With an intact glycocalyx, coronary blood volume was 18.9 +/- 1.1 ml/100 g heart tissue at baseline, which increased to 26.3 +/- 2.7 ml/100 g after hyaluronidase treatment of the coronary glycocalyx. Maximal vasodilation by administration of adenosine further increased coronary blood volume to 33.9 +/- 6.8 ml/100 g, a value not different from the maximal coronary blood volume of 33.2 +/- 5.3 ml/100 g obtained by administration of adenosine in the absence of hyaluronidase treatment. Adenosine-induced increases in coronary conductance were not affected by hyaluronidase treatment. We conclude that acute attenuation of glycocalyx barrier properties increases coronary blood volume by approximately 40%, which is of similar magnitude as additional changes in coronary blood volume during subsequent maximal vasodilation with adenosine. Furthermore, maximal coronary blood volume following administration of adenosine was similar with and without prior hyaluronidase degradation of the glycocalyx, suggesting that adenosine and hyaluronidase potentially increase glycocalyx porosity to a similar extent. Hyaluronidase-mediated changes in coronary blood volume did not affect baseline and adenosine-induced increases in coronary conductance, demonstrating that measurements of coronary flow reserve are insufficient to detect impairment of coronary blood volume recruitment in conditions of damaged glycocalyx.


Physiological Reports | 2014

Early impairment of skeletal muscle endothelial glycocalyx barrier properties in diet-induced obesity in mice.

Bart Eskens; Thomas Leurgans; Hans Vink; Jurgen W. G. E. VanTeeffelen

While previous studies have indicated an important role for the endothelial glycocalyx in regulation of microvascular function, it was recently shown that acute enzymatic glycocalyx degradation in rats was associated with an impaired insulin‐mediated glucose disposal. The aim of this study was to determine whether glycocalyx damage in skeletal muscle occurs at an early stage of diet‐induced obesity (DIO). The microcirculation of the hindlimb muscle of anesthetized C57Bl/6 mice, fed chow (CON) or a high‐fat diet (HFD) for 6 and 18 weeks (w), respectively, was visualized with a Sidestream Dark‐Field camera, and glycocalyx barrier properties were derived from the calculated perfused boundary region (PBR). Subsequently, an intraperitoneal glucose tolerance test was performed and the area under the curve (AUC) of blood glucose was calculated. Impairment of glycocalyx barrier properties was already apparent after 6 weeks of HFD and remained after 18 weeks of HFD (PBR [in μm]: 0.81 ± 0.03 in CON_6w vs. 0.97 ± 0.04 in HFD_6w and 1.02 ± 0.07 in HFD_18w [both P < 0.05]). Glucose intolerance appeared to develop more slowly (AUC [in mmol/L × 120 min]: 989 ± 61 in CON_6w vs. 1204 ± 89 in HFD_6w [P = 0.11] and 1468 ± 84 in HFD_18w [P < 0.05]) than the impairment of glycocalyx barrier properties. The data indicate that damage to the endothelial glycocalyx is an early event in DIO. It is suggested that glycocalyx damage may contribute to the development of insulin resistance in obesity.


Critical Care | 2008

How to prevent leaky vessels during reperfusion? Just keep that glycocalyx sealant in place!

Jurgen W. G. E. VanTeeffelen

Myocardial edema is a hallmark of ischemia-reperfusion-related cardiac injury. Ischemia-reperfusion has been shown to result in degradation of the endothelial glycocalyx. The glycocalyx is the gel-like mesh of polysaccharide structures and absorped plasma proteins on the luminal side of the vasculature, and in the past decade has been shown to play an important role in protection of the vessel wall, including its barrier properties. Prevention of glycocalyx loss or restoration of a damaged glycocalyx may be a promising therapeutic target during clinical procedures involving ischemia-reperfusion.


Journal of Applied Physiology | 2013

Effect of acute hyaluronidase treatment of the glycocalyx on tracer-based whole body vascular volume estimates in mice

Jurgen W. G. E. VanTeeffelen; Judith Brands; Ben J. A. Janssen; Hans Vink

The endothelial glycocalyx forms a hyaluronan-containing interface between the flowing blood and the endothelium throughout the body. By comparing the systemic distribution of a small glycocalyx-accessible tracer vs. a large circulating plasma tracer, the size-selective barrier properties of the glycocalyx have recently been utilized to estimate whole body glycocalyx volumes in humans and animals, but a comprehensive validation of this approach has been lacking at the moment. In the present study, we compared, in anesthetized, ventilated C57Bl/6 mice, the whole body distribution of small (40 kDa) dextrans (Texas Red labeled; Dex40) vs. that of intermediate (70 kDa) and large (500 kDa) dextrans (both FITC labeled; Dex70 and Dex500, respectively) using tracer dilution and vs. that of circulating plasma, as derived from the dilution of fluorescein-labeled red blood cells and large-vessel hematocrit. The contribution of the glycocalyx was evaluated by intravenous infusion of a bolus of the enzyme hyaluronidase. In saline-treated control mice, distribution volume (in ml) differed between tracers (P < 0.05; ANOVA) in the following order: Dex40 (0.97 ± 0.04) > Dex70 (0.90 ± 0.04) > Dex500 (0.81 ± 0.10) > plasma (0.71 ± 0.02), resulting in an inaccessible vascular volume, i.e., compared with the distribution volume of Dex40, of 0.03 ± 0.01, 0.15 ± 0.04, and 0.31 ± 0.05 ml for Dex70, Dex500, and plasma, respectively. In hyaluronidase-treated mice, Dex70 and Dex40 volumes were not different from each other, and inaccessible vascular volumes for Dex500 (0.03 ± 0.03) and plasma (0.14 ± 0.05) were smaller (P < 0.05) than those in control animals. Clearance of Dex70 and Dex500 from the circulation was enhanced (P < 0.05) in hyaluronidase-treated vs. control mice. These results indicate that the glycocalyx contributes to size-dependent differences in whole body vascular distribution of plasma solutes in mice. Whole body vascular volume measurements based on the differential distribution of glycocalyx-selective tracers appear appropriate for the detection of generalized glycocalyx degradation in experimental animals and humans.


American Journal of Physiology-heart and Circulatory Physiology | 1998

Impairment of contraction increases sensitivity of epicardial lymph pressure for left ventricular pressure

Jurgen W. G. E. VanTeeffelen; Daphne Merkus; Luc J. Bos; Isabelle Vergroesen; Jos A. E. Spaan

In the present study, cardiac contraction was regionally impaired to investigate the relationship between contractility [maximum first time derivative of left ventricular pressure (dPLV/d t max)] and PLV on epicardial lymph pressure (Plymph) generation. Measurements were performed in open-chest anesthetized dogs under control conditions and while local contraction was abolished by intracoronary administration of lidocaine. Lidocaine significantly lowered dPLV/d t maxand PLV pulse to 77 ± 9 (SD; n = 5) and 82 ± 5% of control, respectively, whereas Plymph pulse increased to 186 ± 101%. The relative increase of maximum Plymph to PLV related inversely to the change in dPLV/d t maxafter lidocaine administration. Additional data were obtained when PLV was transiently increased by constriction of the descending aorta. The ratio of pulse Plymph to PLV during aortic clamping increased after lidocaine administration, from 0.063 ± 0.03 to 0.15 ± 0.09. The results suggest that transmission of PLV to the cardiac lymphatic vasculature is enhanced when regional contraction is impaired. These findings imply that during normal, unimpaired contraction lymph vessels are shielded from high systolic PLV by the myocardium itself.In the present study, cardiac contraction was regionally impaired to investigate the relationship between contractility [maximum first time derivative of left ventricular pressure (dPLV/dtmax)] and PLV on epicardial lymph pressure (Plymph) generation. Measurements were performed in open-chest anesthetized dogs under control conditions and while local contraction was abolished by intracoronary administration of lidocaine. Lidocaine significantly lowered dPLV/dtmax and PLV pulse to 77 +/- 9 (SD; n = 5) and 82 +/- 5% of control, respectively, whereas Plymph pulse increased to 186 +/- 101%. The relative increase of maximum Plymph to PLV related inversely to the change in dPLV/dtmax after lidocaine administration. Additional data were obtained when PLV was transiently increased by constriction of the descending aorta. The ratio of pulse Plymph to PLV during aortic clamping increased after lidocaine administration, from 0.063 +/- 0.03 to 0.15 +/- 0.09. The results suggest that transmission of PLV to the cardiac lymphatic vasculature is enhanced when regional contraction is impaired. These findings imply that during normal, unimpaired contraction lymph vessels are shielded from high systolic PLV by the myocardium itself.

Collaboration


Dive into the Jurgen W. G. E. VanTeeffelen's collaboration.

Top Co-Authors

Avatar

Hans Vink

Maastricht University

View shared research outputs
Top Co-Authors

Avatar

Judith Brands

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge