Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Justin C. Fay is active.

Publication


Featured researches published by Justin C. Fay.


Genome Research | 2009

Identification of deleterious mutations within three human genomes

Sung Chun; Justin C. Fay

Each human carries a large number of deleterious mutations. Together, these mutations make a significant contribution to human disease. Identification of deleterious mutations within individual genome sequences could substantially impact an individuals health through personalized prevention and treatment of disease. Yet, distinguishing deleterious mutations from the massive number of nonfunctional variants that occur within a single genome is a considerable challenge. Using a comparative genomics data set of 32 vertebrate species we show that a likelihood ratio test (LRT) can accurately identify a subset of deleterious mutations that disrupt highly conserved amino acids within protein-coding sequences, which are likely to be unconditionally deleterious. The LRT is also able to identify known human disease alleles and performs as well as two commonly used heuristic methods, SIFT and PolyPhen. Application of the LRT to three human genomes reveals 796-837 deleterious mutations per individual, approximately 40% of which are estimated to be at <5% allele frequency. However, the overlap between predictions made by the LRT, SIFT, and PolyPhen, is low; 76% of predictions are unique to one of the three methods, and only 5% of predictions are shared across all three methods. Our results indicate that only a small subset of deleterious mutations can be reliably identified, but that this subset provides the raw material for personalized medicine.


PLOS Genetics | 2005

Evidence for Domesticated and Wild Populations of Saccharomyces cerevisiae

Justin C. Fay; Joseph A. Benavides

Saccharomyces cerevisiae is predominantly found in association with human activities, particularly the production of alcoholic beverages. S. paradoxus, the closest known relative of S. cerevisiae, is commonly found on exudates and bark of deciduous trees and in associated soils. This has lead to the idea that S. cerevisiae is a domesticated species, specialized for the fermentation of alcoholic beverages, and isolates of S. cerevisiae from other sources simply represent migrants from these fermentations. We have surveyed DNA sequence diversity at five loci in 81 strains of S. cerevisiae that were isolated from a variety of human and natural fermentations as well as sources unrelated to alcoholic beverage production, such as tree exudates and immunocompromised patients. Diversity within vineyard strains and within saké strains is low, consistent with their status as domesticated stocks. The oldest lineages and the majority of variation are found in strains from sources unrelated to wine production. We propose a model whereby two specialized breeds of S. cerevisiae have been created, one for the production of grape wine and one for the production of saké wine. We estimate that these two breeds have remained isolated from one another for thousands of years, consistent with the earliest archeological evidence for winemaking. We conclude that although there are clearly strains of S. cerevisiae specialized for the production of alcoholic beverages, these have been derived from natural populations unassociated with alcoholic beverage production, rather than the opposite.


Nature | 2002

Testing the neutral theory of molecular evolution with genomic data from Drosophila

Justin C. Fay; Gerald J. Wyckoff; Chung-I Wu

Although positive selection has been detected in many genes, its overall contribution to protein evolution is debatable. If the bulk of molecular evolution is neutral, then the ratio of amino-acid (A) to synonymous (S) polymorphism should, on average, equal that of divergence. A comparison of the A/S ratio of polymorphism in Drosophila melanogaster with that of divergence from Drosophila simulans shows that the A/S ratio of divergence is twice as high—a difference that is often attributed to positive selection. But an increase in selective constraint owing to an increase in effective population size could also explain this observation, and, if so, all genes should be affected similarly. Here we show that the difference between polymorphism and divergence is limited to only a fraction of the genes, which are also evolving more rapidly, and this implies that positive selection is responsible. A higher A/S ratio of divergence than of polymorphism is also observed in other species, which suggests a rate of adaptive evolution that is far higher than permitted by the neutral theory of molecular evolution.


Chromosoma | 2008

Association of cohesin and Nipped-B with transcriptionally active regions of the Drosophila melanogaster genome.

Ziva Misulovin; Yuri B. Schwartz; Xiao-Yong Li; Tatyana G. Kahn; Maria Gause; Stewart MacArthur; Justin C. Fay; Michael B. Eisen; Vincenzo Pirrotta; Mark D. Biggin; Dale Dorsett

The cohesin complex is a chromosomal component required for sister chromatid cohesion that is conserved from yeast to man. The similarly conserved Nipped-B protein is needed for cohesin to bind to chromosomes. In higher organisms, Nipped-B and cohesin regulate gene expression and development by unknown mechanisms. Using chromatin immunoprecipitation, we find that Nipped-B and cohesin bind to the same sites throughout the entire non-repetitive Drosophila genome. They preferentially bind transcribed regions and overlap with RNA polymerase II. This contrasts sharply with yeast, where cohesin binds almost exclusively between genes. Differences in cohesin and Nipped-B binding between Drosophila cell lines often correlate with differences in gene expression. For example, cohesin and Nipped-B bind the Abd-B homeobox gene in cells in which it is transcribed, but not in cells in which it is silenced. They bind to the Abd-B transcription unit and downstream regulatory region and thus could regulate both transcriptional elongation and activation. We posit that transcription facilitates cohesin binding, perhaps by unfolding chromatin, and that Nipped-B then regulates gene expression by controlling cohesin dynamics. These mechanisms are likely involved in the etiology of Cornelia de Lange syndrome, in which mutation of one copy of the NIPBL gene encoding the human Nipped-B ortholog causes diverse structural and mental birth defects.


Genome Biology | 2004

Population genetic variation in gene expression is associated with phenotypic variation in Saccharomyces cerevisiae

Justin C. Fay; Heather L McCullough; Paul D. Sniegowski; Michael B. Eisen

BackgroundThe relationship between genetic variation in gene expression and phenotypic variation observable in nature is not well understood. Identifying how many phenotypes are associated with differences in gene expression and how many gene-expression differences are associated with a phenotype is important to understanding the molecular basis and evolution of complex traits.ResultsWe compared levels of gene expression among nine natural isolates of Saccharomyces cerevisiae grown either in the presence or absence of copper sulfate. Of the nine strains, two show a reduced growth rate and two others are rust colored in the presence of copper sulfate. We identified 633 genes that show significant differences in expression among strains. Of these genes, 20 were correlated with resistance to copper sulfate and 24 were correlated with rust coloration. The function of these genes in combination with their expression pattern suggests the presence of both correlative and causative expression differences. But the majority of differentially expressed genes were not correlated with either phenotype and showed the same expression pattern both in the presence and absence of copper sulfate. To determine whether these expression differences may contribute to phenotypic variation under other environmental conditions, we examined one phenotype, freeze tolerance, predicted by the differential expression of the aquaporin gene AQY2. We found freeze tolerance is associated with the expression of AQY2.ConclusionsGene expression differences provide substantial insight into the molecular basis of naturally occurring traits and can be used to predict environment dependent phenotypic variation.


PLOS Genetics | 2008

A Catalog of Neutral and Deleterious Polymorphism in Yeast

Scott W. Doniger; Hyun Seok Kim; Devjanee Swain; Daniella Corcuera; Morgan Williams; Shiaw Pyng Yang; Justin C. Fay

The abundance and identity of functional variation segregating in natural populations is paramount to dissecting the molecular basis of quantitative traits as well as human genetic diseases. Genome sequencing of multiple organisms of the same species provides an efficient means of cataloging rearrangements, insertion, or deletion polymorphisms (InDels) and single-nucleotide polymorphisms (SNPs). While inbreeding depression and heterosis imply that a substantial amount of polymorphism is deleterious, distinguishing deleterious from neutral polymorphism remains a significant challenge. To identify deleterious and neutral DNA sequence variation within Saccharomyces cerevisiae, we sequenced the genome of a vineyard and oak tree strain and compared them to a reference genome. Among these three strains, 6% of the genome is variable, mostly attributable to variation in genome content that results from large InDels. Out of the 88,000 polymorphisms identified, 93% are SNPs and a small but significant fraction can be attributed to recent interspecific introgression and ectopic gene conversion. In comparison to the reference genome, there is substantial evidence for functional variation in gene content and structure that results from large InDels, frame-shifts, and polymorphic start and stop codons. Comparison of polymorphism to divergence reveals scant evidence for positive selection but an abundance of evidence for deleterious SNPs. We estimate that 12% of coding and 7% of noncoding SNPs are deleterious. Based on divergence among 11 yeast species, we identified 1,666 nonsynonymous SNPs that disrupt conserved amino acids and 1,863 noncoding SNPs that disrupt conserved noncoding motifs. The deleterious coding SNPs include those known to affect quantitative traits, and a subset of the deleterious noncoding SNPs occurs in the promoters of genes that show allele-specific expression, implying that some cis-regulatory SNPs are deleterious. Our results show that the genome sequences of both closely and distantly related species provide a means of identifying deleterious polymorphisms that disrupt functionally conserved coding and noncoding sequences.


Nature Methods | 2009

Quantification of rare allelic variants from pooled genomic DNA

Todd E. Druley; Francesco Vallania; Daniel J. Wegner; Katherine E. Varley; Olivia L. Knowles; Jacqueline A. Bonds; Sarah W. Robison; Scott W. Doniger; Aaron Hamvas; F. Sessions Cole; Justin C. Fay; Robi D. Mitra

We report a targeted, cost-effective method to quantify rare single-nucleotide polymorphisms from pooled human genomic DNA using second-generation sequencing. We pooled DNA from 1,111 individuals and targeted four genes to identify rare germline variants. Our base-calling algorithm, SNPSeeker, derived from large deviation theory, detected single-nucleotide polymorphisms present at frequencies below the raw error rate of the sequencing platform.


PLOS Computational Biology | 2005

Frequent gain and loss of functional transcription factor binding sites

Scott W. Doniger; Justin C. Fay

Cis-regulatory sequences are not always conserved across species. Divergence within cis-regulatory sequences may result from the evolution of species-specific patterns of gene expression or the flexible nature of the cis-regulatory code. The identification of functional divergence in cis-regulatory sequences is therefore important for both understanding the role of gene regulation in evolution and annotating regulatory elements. We have developed an evolutionary model to detect the loss of constraint on individual transcription factor binding sites (TFBSs). We find that a significant fraction of functionally constrained binding sites have been lost in a lineage-specific manner among three closely related yeast species. Binding site loss has previously been explained by turnover, where the concurrent gain and loss of a binding site maintains gene regulation. We estimate that nearly half of all loss events cannot be explained by binding site turnover. Recreating the mutations that led to binding site loss confirms that these sequence changes affect gene expression in some cases. We also estimate that there is a high rate of binding site gain, as more than half of experimentally identified S. cerevisiae binding sites are not conserved across species. The frequent gain and loss of TFBSs implies that cis-regulatory sequences are labile and, in the absence of turnover, may contribute to species-specific patterns of gene expression.


Heredity | 2008

Evaluating the role of natural selection in the evolution of gene regulation

Justin C. Fay; Patricia J. Wittkopp

Surveys of gene expression reveal extensive variability both within and between a wide range of species. Compelling cases have been made for adaptive changes in gene regulation, but the proportion of expression divergence attributable to natural selection remains unclear. Distinguishing adaptive changes driven by positive selection from neutral divergence resulting from mutation and genetic drift is critical for understanding the evolution of gene expression. Here, we review the various methods that have been used to test for signs of selection in genomic expression data. We also discuss properties of regulatory systems relevant to neutral models of gene expression. Despite some potential caveats, published studies provide considerable evidence for adaptive changes in gene expression. Future challenges for studies of regulatory evolution will be to quantify the frequency of adaptive changes, identify the genetic basis of expression divergence and associate changes in gene expression with specific organismal phenotypes.


G3: Genes, Genomes, Genetics | 2013

Genomic Sequence Diversity and Population Structure of Saccharomyces cerevisiae Assessed by RAD-seq

Gareth A. Cromie; Katie E. Hyma; Catherine L. Ludlow; Cecilia Garmendia-Torres; Teresa L. Gilbert; Patrick May; Angela A. Huang; Aimée M. Dudley; Justin C. Fay

The budding yeast Saccharomyces cerevisiae is important for human food production and as a model organism for biological research. The genetic diversity contained in the global population of yeast strains represents a valuable resource for a number of fields, including genetics, bioengineering, and studies of evolution and population structure. Here, we apply a multiplexed, reduced genome sequencing strategy (restriction site−associated sequencing or RAD-seq) to genotype a large collection of S. cerevisiae strains isolated from a wide range of geographical locations and environmental niches. The method permits the sequencing of the same 1% of all genomes, producing a multiple sequence alignment of 116,880 bases across 262 strains. We find diversity among these strains is principally organized by geography, with European, North American, Asian, and African/S. E. Asian populations defining the major axes of genetic variation. At a finer scale, small groups of strains from cacao, olives, and sake are defined by unique variants not present in other strains. One population, containing strains from a variety of fermentations, exhibits high levels of heterozygosity and a mixture of alleles from European and Asian populations, indicating an admixed origin for this group. We propose a model of geographic differentiation followed by human-associated admixture, primarily between European and Asian populations and more recently between European and North American populations. The large collection of genotyped yeast strains characterized here will provide a useful resource for the broad community of yeast researchers.

Collaboration


Dive into the Justin C. Fay's collaboration.

Top Co-Authors

Avatar

Scott W. Doniger

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hyun Seok Kim

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Louis J. Muglia

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Sung Chun

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jevon Plunkett

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Juyoung Huh

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kari Teramo

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar

Bimal P. Chaudhari

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge