Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katie E. Hyma is active.

Publication


Featured researches published by Katie E. Hyma.


G3: Genes, Genomes, Genetics | 2013

Genomic Sequence Diversity and Population Structure of Saccharomyces cerevisiae Assessed by RAD-seq

Gareth A. Cromie; Katie E. Hyma; Catherine L. Ludlow; Cecilia Garmendia-Torres; Teresa L. Gilbert; Patrick May; Angela A. Huang; Aimée M. Dudley; Justin C. Fay

The budding yeast Saccharomyces cerevisiae is important for human food production and as a model organism for biological research. The genetic diversity contained in the global population of yeast strains represents a valuable resource for a number of fields, including genetics, bioengineering, and studies of evolution and population structure. Here, we apply a multiplexed, reduced genome sequencing strategy (restriction site−associated sequencing or RAD-seq) to genotype a large collection of S. cerevisiae strains isolated from a wide range of geographical locations and environmental niches. The method permits the sequencing of the same 1% of all genomes, producing a multiple sequence alignment of 116,880 bases across 262 strains. We find diversity among these strains is principally organized by geography, with European, North American, Asian, and African/S. E. Asian populations defining the major axes of genetic variation. At a finer scale, small groups of strains from cacao, olives, and sake are defined by unique variants not present in other strains. One population, containing strains from a variety of fermentations, exhibits high levels of heterozygosity and a mixture of alleles from European and Asian populations, indicating an admixed origin for this group. We propose a model of geographic differentiation followed by human-associated admixture, primarily between European and Asian populations and more recently between European and North American populations. The large collection of genotyped yeast strains characterized here will provide a useful resource for the broad community of yeast researchers.


BMC Genomics | 2014

Genotyping by sequencing for genomic prediction in a soybean breeding population

Diego Jarquin; Kyle Kocak; Luis Posadas; Katie E. Hyma; Joseph Jedlicka; George L. Graef; Aaron J. Lorenz

BackgroundAdvances in genotyping technology, such as genotyping by sequencing (GBS), are making genomic prediction more attractive to reduce breeding cycle times and costs associated with phenotyping. Genomic prediction and selection has been studied in several crop species, but no reports exist in soybean. The objectives of this study were (i) evaluate prospects for genomic selection using GBS in a typical soybean breeding program and (ii) evaluate the effect of GBS marker selection and imputation on genomic prediction accuracy. To achieve these objectives, a set of soybean lines sampled from the University of Nebraska Soybean Breeding Program were genotyped using GBS and evaluated for yield and other agronomic traits at multiple Nebraska locations.ResultsGenotyping by sequencing scored 16,502 single nucleotide polymorphisms (SNPs) with minor-allele frequency (MAF) > 0.05 and percentage of missing values ≤ 5% on 301 elite soybean breeding lines. When SNPs with up to 80% missing values were included, 52,349 SNPs were scored. Prediction accuracy for grain yield, assessed using cross validation, was estimated to be 0.64, indicating good potential for using genomic selection for grain yield in soybean. Filtering SNPs based on missing data percentage had little to no effect on prediction accuracy, especially when random forest imputation was used to impute missing values. The highest accuracies were observed when random forest imputation was used on all SNPs, but differences were not significant. A standard additive G-BLUP model was robust; modeling additive-by-additive epistasis did not provide any improvement in prediction accuracy. The effect of training population size on accuracy began to plateau around 100, but accuracy steadily climbed until the largest possible size was used in this analysis. Including only SNPs with MAF > 0.30 provided higher accuracies when training populations were smaller.ConclusionsUsing GBS for genomic prediction in soybean holds good potential to expedite genetic gain. Our results suggest that standard additive G-BLUP models can be used on unfiltered, imputed GBS data without loss in accuracy.


Molecular Ecology | 2013

Mixing of vineyard and oak-tree ecotypes of Saccharomyces cerevisiae in North American vineyards

Katie E. Hyma; Justin C. Fay

Humans have had a significant impact on the distribution and abundance of Saccharomyces cerevisiae through its widespread use in beer, bread and wine production. Yet, similar to other Saccharomyces species, S. cerevisiae has also been isolated from habitats unrelated to fermentations. Strains of S. cerevisiae isolated from grapes, wine must and vineyards worldwide are genetically differentiated from strains isolated from oak‐tree bark, exudate and associated soil in North America. However, the causes and consequences of this differentiation have not yet been resolved. Historical differentiation of these two groups may have been influenced by geographic, ecological or human‐associated barriers to gene flow. Here, we make use of the relatively recent establishment of vineyards across North America to identify and characterize any active barriers to gene flow between these two groups. We examined S. cerevisiae strains isolated from grapes and oak trees within three North American vineyards and compared them to those isolated from oak trees outside of vineyards. Within vineyards, we found evidence of migration between grapes and oak trees and potential gene flow between the divergent oak‐tree and vineyard groups. Yet, we found no vineyard genotypes on oak trees outside of vineyards. In contrast, Saccharomyces paradoxus isolated from the same sources showed population structure characterized by isolation by distance. The apparent absence of ecological or genetic barriers between sympatric vineyard and oak‐tree populations of S. cerevisiae implies that vineyards play an important role in the mixing between these two groups.


Theoretical and Applied Genetics | 2014

Grapevine powdery mildew resistance and susceptibility loci identified on a high-resolution SNP map

Paola Barba; Lance Cadle-Davidson; James Harriman; Jeffrey C. Glaubitz; Siraprapa Brooks; Katie E. Hyma; Bruce I. Reisch

Improved efficacy and durability of powdery mildew resistance can be enhanced via knowledge of the genetics of resistance and susceptibility coupled with the development of high-resolution maps to facilitate the stacking of multiple resistance genes and other desirable traits. We studied the inheritance of powdery mildew (Erysiphe necator) resistance and susceptibility of wild Vitis rupestris B38 and cultivated V. vinifera ‘Chardonnay’, finding evidence for quantitative variation. Molecular markers were identified using genotyping-by-sequencing, resulting in 16,833 single nucleotide polymorphisms (SNPs) based on alignment to the V. vinifera ‘PN40024’ reference genome sequence. With an average density of 36 SNPs/Mbp and uniform coverage of the genome, this 17K set was used to identify 11 SNPs on chromosome 7 associated with a resistance locus from V. rupestris B38 and ten SNPs on chromosome 9 associated with a locus for susceptibility from ‘Chardonnay’ using single marker association and linkage disequilibrium analysis. Linkage maps for V. rupestris B38 (1,146 SNPs) and ‘Chardonnay’ (1,215 SNPs) were constructed and used to corroborate the ‘Chardonnay’ locus named Sen1 (Susceptibility to Erysiphe necator 1), providing the first insight into the genetics of susceptibility to powdery mildew from V. vinifera. The identification of markers associated with a susceptibility locus in a V. vinifera background can be used for negative selection among breeding progenies. This work improves our understanding of the nature of powdery mildew resistance in V. rupestris B38 and ‘Chardonnay’, while applying next-generation sequencing tools to advance grapevine genomics and breeding.


PLOS ONE | 2015

Heterozygous Mapping Strategy (HetMappS) for High Resolution Genotyping-By- Sequencing Markers: A Case Study in Grapevine

Katie E. Hyma; Paola Barba; Minghui Wang; Jason P. Londo; Charlotte B. Acharya; Sharon E. Mitchell; Qi Sun; Bruce I. Reisch; Lance Cadle-Davidson

Genotyping by sequencing (GBS) provides opportunities to generate high-resolution genetic maps at a low genotyping cost, but for highly heterozygous species, missing data and heterozygote undercalling complicate the creation of GBS genetic maps. To overcome these issues, we developed a publicly available, modular approach called HetMappS, which functions independently of parental genotypes and corrects for genotyping errors associated with heterozygosity. For linkage group formation, HetMappS includes both a reference-guided synteny pipeline and a reference-independent de novo pipeline. The de novo pipeline can be utilized for under-characterized or high diversity families that lack an appropriate reference. We applied both HetMappS pipelines in five half-sib F1 families involving genetically diverse Vitis spp. Starting with at least 116,466 putative SNPs per family, the HetMappS pipelines identified 10,440 to 17,267 phased pseudo-testcross (Pt) markers and generated high-confidence maps. Pt marker density exceeded crossover resolution in all cases; up to 5,560 non-redundant markers were used to generate parental maps ranging from 1,047 cM to 1,696 cM. The number of markers used was strongly correlated with family size in both de novo and synteny maps (r = 0.92 and 0.91, respectively). Comparisons between allele and tag frequencies suggested that many markers were in tandem repeats and mapped as single loci, while markers in regions of more than two repeats were removed during map curation. Both pipelines generated similar genetic maps, and genetic order was strongly correlated with the reference genome physical order in all cases. Independently created genetic maps from shared parents exhibited nearly identical results. Flower sex was mapped in three families and correctly localized to the known sex locus in all cases. The HetMappS pipeline could have wide application for genetic mapping in highly heterozygous species, and its modularity provides opportunities to adapt portions of the pipeline to other family types, genotyping technologies or applications.


Fems Yeast Research | 2011

Divergence in wine characteristics produced by wild and domesticated strains of Saccharomyces cerevisiae.

Katie E. Hyma; Sofie Saerens; Kevin J. Verstrepen; Justin C. Fay

The budding yeast Saccharomyces cerevisiae is the primary species used by wine makers to convert sugar into alcohol during wine fermentation. Saccharomyces cerevisiae is found in vineyards, but is also found in association with oak trees and other natural sources. Although wild strains of S. cerevisiae as well as other Saccharomyces species are also capable of wine fermentation, a genetically distinct group of S. cerevisiae strains is primarily used to produce wine, consistent with the idea that wine making strains have been domesticated for wine production. In this study, we demonstrate that humans can distinguish between wines produced using wine strains and wild strains of S. cerevisiae as well as its sibling species, Saccharomyces paradoxus. Wine strains produced wine with fruity and floral characteristics, whereas wild strains produced wine with earthy and sulfurous characteristics. The differences that we observe between wine and wild strains provides further evidence that wine strains have evolved phenotypes that are distinct from their wild ancestors and relevant to their use in wine production.


Plant Physiology | 2014

The Impact of Herbicide-Resistant Rice (Oryza sativa L.) Technology on Phenotypic Diversity and Population Structure of US Weedy Rice

Nilda R. Burgos; Vijay Singh; Te Ming Tseng; Howard Black; Nelson D. Young; Zhongyun Huang; Katie E. Hyma; David R. Gealy; Ana L. Caicedo

Use of herbicide-resistant rice cultivars in the United States has led to the emergence of herbicide-resistant weedy rice formed predominantly by hybridization of cultivars with historical weeds characterized by black hulls and awns. The use of herbicide-resistant (HR) Clearfield rice (Oryza sativa) to control weedy rice has increased in the past 12 years to constitute about 60% of rice acreage in Arkansas, where most U.S. rice is grown. To assess the impact of HR cultivated rice on the herbicide resistance and population structure of weedy rice, weedy samples were collected from commercial fields with a history of Clearfield rice. Panicles from each weedy type were harvested and tested for resistance to imazethapyr. The majority of plants sampled had at least 20% resistant offspring. These resistant weeds were 97 to 199 cm tall and initiated flowering from 78 to 128 d, generally later than recorded for accessions collected prior to the widespread use of Clearfield rice (i.e. historical accessions). Whereas the majority (70%) of historical accessions had straw-colored hulls, only 30% of contemporary HR weedy rice had straw-colored hulls. Analysis of genotyping-by-sequencing data showed that HR weeds were not genetically structured according to hull color, whereas historical weedy rice was separated into straw-hull and black-hull populations. A significant portion of the local rice crop genome was introgressed into HR weedy rice, which was rare in historical weedy accessions. Admixture analyses showed that HR weeds tend to possess crop haplotypes in the portion of chromosome 2 containing the ACETOLACTATE SYNTHASE gene, which confers herbicide resistance to Clearfield rice. Thus, U.S. HR weedy rice is a distinct population relative to historical weedy rice and shows modifications in morphology and phenology that are relevant to weed management.


PLOS ONE | 2015

Genotyping-By-Sequencing (GBS) Detects Genetic Structure and Confirms Behavioral QTL in Tame and Aggressive Foxes (Vulpes vulpes)

Jennifer L. Johnson; Helena Wittgenstein; Sharon E. Mitchell; Katie E. Hyma; Svetlana V. Temnykh; Anastasiya V. Kharlamova; Rimma G. Gulevich; Anastasiya V. Vladimirova; Hiu Wa Flora Fong; Gregory M. Acland; Lyudmila N. Trut; Anna V. Kukekova

The silver fox (Vulpes vulpes) offers a novel model for studying the genetics of social behavior and animal domestication. Selection of foxes, separately, for tame and for aggressive behavior has yielded two strains with markedly different, genetically determined, behavioral phenotypes. Tame strain foxes are eager to establish human contact while foxes from the aggressive strain are aggressive and difficult to handle. These strains have been maintained as separate outbred lines for over 40 generations but their genetic structure has not been previously investigated. We applied a genotyping-by-sequencing (GBS) approach to provide insights into the genetic composition of these fox populations. Sequence analysis of EcoT22I genomic libraries of tame and aggressive foxes identified 48,294 high quality SNPs. Population structure analysis revealed genetic divergence between the two strains and more diversity in the aggressive strain than in the tame one. Significant differences in allele frequency between the strains were identified for 68 SNPs. Three of these SNPs were located on fox chromosome 14 within an interval of a previously identified behavioral QTL, further supporting the importance of this region for behavior. The GBS SNP data confirmed that significant genetic diversity has been preserved in both fox populations despite many years of selective breeding. Analysis of SNP allele frequencies in the two populations identified several regions of genetic divergence between the tame and aggressive foxes, some of which may represent targets of selection for behavior. The GBS protocol used in this study significantly expanded genomic resources for the fox, and can be adapted for SNP discovery and genotyping in other canid species.


Biotechnology for Biofuels | 2017

Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production

David Peris; Ryan V. Moriarty; William G. Alexander; EmilyClare P. Baker; Kayla Sylvester; Maria Sardi; Quinn K. Langdon; Diego Libkind; Qi Ming Wang; Feng Yan Bai; Jean-Baptiste Leducq; Guillaume Charron; Christian R. Landry; José Paulo Sampaio; Paula Gonçalves; Katie E. Hyma; Justin C. Fay; Trey K. Sato; Chris Todd Hittinger

BackgroundLignocellulosic biomass is a common resource across the globe, and its fermentation offers a promising option for generating renewable liquid transportation fuels. The deconstruction of lignocellulosic biomass releases sugars that can be fermented by microbes, but these processes also produce fermentation inhibitors, such as aromatic acids and aldehydes. Several research projects have investigated lignocellulosic biomass fermentation by the baker’s yeast Saccharomyces cerevisiae. Most projects have taken synthetic biological approaches or have explored naturally occurring diversity in S. cerevisiae to enhance stress tolerance, xylose consumption, or ethanol production. Despite these efforts, improved strains with new properties are needed. In other industrial processes, such as wine and beer fermentation, interspecies hybrids have combined important traits from multiple species, suggesting that interspecies hybridization may also offer potential for biofuel research.ResultsTo investigate the efficacy of this approach for traits relevant to lignocellulosic biofuel production, we generated synthetic hybrids by crossing engineered xylose-fermenting strains of S. cerevisiae with wild strains from various Saccharomyces species. These interspecies hybrids retained important parental traits, such as xylose consumption and stress tolerance, while displaying intermediate kinetic parameters and, in some cases, heterosis (hybrid vigor). Next, we exposed them to adaptive evolution in ammonia fiber expansion-pretreated corn stover hydrolysate and recovered strains with improved fermentative traits. Genome sequencing showed that the genomes of these evolved synthetic hybrids underwent rearrangements, duplications, and deletions. To determine whether the genus Saccharomyces contains additional untapped potential, we screened a genetically diverse collection of more than 500 wild, non-engineered Saccharomyces isolates and uncovered a wide range of capabilities for traits relevant to cellulosic biofuel production. Notably, Saccharomyces mikatae strains have high innate tolerance to hydrolysate toxins, while some Saccharomyces species have a robust native capacity to consume xylose.ConclusionsThis research demonstrates that hybridization is a viable method to combine industrially relevant traits from diverse yeast species and that members of the genus Saccharomyces beyond S. cerevisiae may offer advantageous genes and traits of interest to the lignocellulosic biofuel industry.


PLOS ONE | 2016

A genome-wide association study on the seedless phenotype in banana (#Musa# spp.) reveals the potential of a selected panel to detect candidate genes in a vegetatively propagated crop

Julie Sardos; Mathieu Rouard; Y. Hueber; Alberto Cenci; Katie E. Hyma; Ines Van den houwe; E. Hribova; Brigitte Courtois; Nicolas Roux

Banana (Musa sp.) is a vegetatively propagated, low fertility, potentially hybrid and polyploid crop. These qualities make the breeding and targeted genetic improvement of this crop a difficult and long process. The Genome-Wide Association Study (GWAS) approach is becoming widely used in crop plants and has proven efficient to detecting candidate genes for traits of interest, especially in cereals. GWAS has not been applied yet to a vegetatively propagated crop. However, successful GWAS in banana would considerably help unravel the genomic basis of traits of interest and therefore speed up this crop improvement. We present here a dedicated panel of 105 accessions of banana, freely available upon request, and their corresponding GBS data. A set of 5,544 highly reliable markers revealed high levels of admixture in most accessions, except for a subset of 33 individuals from Papua. A GWAS on the seedless phenotype was then successfully applied to the panel. By applying the Mixed Linear Model corrected for both kinship and structure as implemented in TASSEL, we detected 13 candidate genomic regions in which we found a number of genes potentially linked with the seedless phenotype (i.e. parthenocarpy combined with female sterility). An additional GWAS performed on the unstructured Papuan subset composed of 33 accessions confirmed six of these regions as candidate. Out of both sets of analyses, one strong candidate gene for female sterility, a putative orthologous gene to Histidine Kinase CKI1, was identified. The results presented here confirmed the feasibility and potential of GWAS when applied to small sets of banana accessions, at least for traits underpinned by a few loci. As phenotyping in banana is extremely space and time-consuming, this latest finding is of particular importance in the context of banana improvement.

Collaboration


Dive into the Katie E. Hyma's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Justin C. Fay

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Lance Cadle-Davidson

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason P. Londo

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julie Sardos

Bioversity International

View shared research outputs
Top Co-Authors

Avatar

Mathieu Rouard

Bioversity International

View shared research outputs
Researchain Logo
Decentralizing Knowledge