Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Justin D. Hoopes is active.

Publication


Featured researches published by Justin D. Hoopes.


Journal of Immunology | 2006

TLR3 deletion limits mortality and disease severity due to phlebovirus infection

Brian B. Gowen; Justin D. Hoopes; Min-Hui Wong; Kie-Hoon Jung; Kevin C. Isakson; Lena Alexopoulou; Richard A. Flavell; Robert W. Sidwell

TLR3 was the first member of the TLR family of pattern recognition receptors found to detect a conserved viral molecular pattern, dsRNA, yet supporting evidence for a major role in host defense against viral pathogens is limited. Punta Toro virus (PTV) has been shown to produce severe infection in mice, modeling disease caused by the related highly pathogenic Rift Valley fever phlebovirus in humans and domesticated ungulates. Using TLR3-deficient mice, we investigated the involvement of TLR3 in host defense against PTV infection. Compared with wild-type, TLR3−/− mice demonstrate increased resistance to lethal infection and have reduced liver disease associated with hepatotropic PTV infection. Infectious challenge produced comparable peak liver and serum viral loads; however, TLR3−/− mice were able to clear systemic virus at a slightly faster rate. Cytokine profiling suggests that TLR3 plays an important role in PTV pathogenesis through the overproduction of inflammatory mediators, which may be central to the observed differences in survival and disease severity. Compared with TLR3-deficient mice, IL-6, MCP-1, IFN-γ, and RANTES were all present at higher levels in wild-type animals. Most dramatic was the exaggerated levels of IL-6 found systemically and in liver tissue of infected wild-type mice; however, IL-6-deficient animals were found to be more susceptible to lethal PTV infection. Taken together, we conclude that the TLR3-mediated response to PTV infection is detrimental to disease outcome and propose that IL-6, although critical to establishing antiviral defense, contributes to pathogenesis when released in excess, necessitating its controlled production as is seen with TLR3−/− mice.


PLOS ONE | 2010

Triple Combination of Amantadine, Ribavirin, and Oseltamivir Is Highly Active and Synergistic against Drug Resistant Influenza Virus Strains In Vitro

Jack Nguyen; Justin D. Hoopes; Minh Thi Hong Le; Donald F. Smee; Amy K. Patick; Dennis J. Faix; Patrick J. Blair; Menno D. de Jong; Mark N. Prichard; Gregory T. Went

The rapid emergence and subsequent spread of the novel 2009 Influenza A/H1N1 virus (2009 H1N1) has prompted the World Health Organization to declare the first pandemic of the 21st century, highlighting the threat of influenza to public health and healthcare systems. Widespread resistance to both classes of influenza antivirals (adamantanes and neuraminidase inhibitors) occurs in both pandemic and seasonal viruses, rendering these drugs to be of marginal utility in the treatment modality. Worldwide, virtually all 2009 H1N1 and seasonal H3N2 strains are resistant to the adamantanes (rimantadine and amantadine), and the majority of seasonal H1N1 strains are resistant to oseltamivir, the most widely prescribed neuraminidase inhibitor (NAI). To address the need for more effective therapy, we evaluated the in vitro activity of a triple combination antiviral drug (TCAD) regimen composed of drugs with different mechanisms of action against drug-resistant seasonal and 2009 H1N1 influenza viruses. Amantadine, ribavirin, and oseltamivir, alone and in combination, were tested against amantadine- and oseltamivir-resistant influenza A viruses using an in vitro infection model in MDCK cells. Our data show that the triple combination was highly synergistic against drug-resistant viruses, and the synergy of the triple combination was significantly greater than the synergy of any double combination tested (P<0.05), including the combination of two NAIs. Surprisingly, amantadine and oseltamivir contributed to the antiviral activity of the TCAD regimen against amantadine- and oseltamivir-resistant viruses, respectively, at concentrations where they had no activity as single agents, and at concentrations that were clinically achievable. Our data demonstrate that the TCAD regimen composed of amantadine, ribavirin, and oseltamivir is highly synergistic against resistant viruses, including 2009 H1N1. The TCAD regimen overcomes baseline drug resistance to both classes of approved influenza antivirals, and thus may represent a highly active antiviral therapy for seasonal and pandemic influenza.


Antimicrobial Agents and Chemotherapy | 2009

Triple combination of oseltamivir, amantadine, and ribavirin displays synergistic activity against multiple influenza virus strains in vitro.

Jack Nguyen; Justin D. Hoopes; Donald F. Smee; Mark N. Prichard; Elizabeth M. Driebe; David M. Engelthaler; Minh Le; Paul Keim; R. Paul Spence; Gregory T. Went

ABSTRACT The recurring emergence of influenza virus strains that are resistant to available antiviral medications has become a global health concern, especially in light of the potential for a new influenza virus pandemic. Currently, virtually all circulating strains of influenza A virus in the United States are resistant to either of the two major classes of anti-influenza drugs (adamantanes and neuraminidase inhibitors). Thus, new therapeutic approaches that can be rapidly deployed and that will address the issue of recurring resistance should be developed. We have tested double and triple combinations of the approved anti-influenza drugs oseltamivir and amantadine together with ribavirin against three influenza virus strains using cytopathic effect inhibition assays in MDCK cells. We selected A/New Caledonia/20/99 (H1N1) and A/Sydney/05/97 (H3N2) as representatives of the wild-type versions of the predominant circulating seasonal influenza virus strains and A/Duck/MN/1525/81 (H5N1) as a representative of avian influenza virus strains. Dose-response curves were generated for all drug combinations, and the degree of drug interaction was quantified using a model that calculates the synergy (or antagonism) between the drugs in double and triple combinations. This report demonstrates that a triple combination of antivirals was highly synergistic against influenza A virus. Importantly, the synergy of the triple combination was 2- to 13-fold greater than the synergy of any double combination depending on the influenza virus subtype. These data support the investigation of a novel combination of oseltamivir, amantadine, and ribavirin as an effective treatment for both seasonal and pandemic influenza virus, allowing the efficient use of the existing drug supplies.


Antiviral Research | 2006

Enhancement of the infectivity of SARS-CoV in BALB/c mice by IMP dehydrogenase inhibitors, including ribavirin.

Dale L. Barnard; Craig W. Day; Kevin W. Bailey; Matthew Heiner; Robert Montgomery; Larry Lauridsen; Scott Winslow; Justin D. Hoopes; Joseph K.-K. Li; Jongdae Lee; Dennis A. Carson; Howard B. Cottam; Robert W. Sidwell

Abstract Because of the conflicting data concerning the SARS-CoV inhibitory efficacy of ribavirin, an inosine monophosphate (IMP) dehydrogenase inhibitor, studies were done to evaluate the efficacy of ribavirin and other IMP dehydrogenase inhibitors (5-ethynyl-1-β-d-ribofuranosylimidazole-4-carboxamide (EICAR), mizoribine, and mycophenolic acid) in preventing viral replication in the lungs of BALB/c mice, a replication model for severe acute respiratory syndrome (SARS) infections (Subbarao, K., McAuliffe, J., Vogel, L., Fahle, G., Fischer, S., Tatti, K., Packard, M., Shieh, W.J., Zaki, S., Murphy, B., 2004. Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus (SARS-CoV) in the respiratory tract of mice. J. Virol. 78, 3572–3577). Ribavirin given at 75mg/kg 4h prior to virus exposure and then given twice daily for 3 days beginning at day 0 was found to increase virus lung titers and extend the length of time that virus could be detected in the lungs of mice. Other IMP dehydrogenase inhibitors administered near maximum tolerated doses using the same dosing regimen as for ribavirin were found to slightly enhance virus replication in the lungs. In addition, ribavirin treatment seemed also to promote the production of pro-inflammatory cytokines 4 days after cessation of treatment, although after 3 days of treatment ribavirin inhibited pro-inflammatory cytokine production in infected mice, significantly reducing the levels of the cytokines IL-1α, interleukin-5 (IL-5), monocyte chemotactic protein-1 (MCP-1), and granulocyte-macrophage colony stimulating factor (GM-CSF). These findings suggest that ribavirin may actually contribute to the pathogenesis of SARS-CoV by prolonging and/or enhancing viral replication in the lungs. By not inhibiting viral replication in the lungs of infected mice, ribavirin treatment may have provided a continual source of stimulation for the inflammatory response thought to contribute to the pathogenesis of the infection. Our data do not support the use of ribavirin or other IMP dehydrogenase inhibitors for treating SARS infections in humans.


PLOS ONE | 2011

Triple Combination Antiviral Drug (TCAD) Composed of Amantadine, Oseltamivir, and Ribavirin Impedes the Selection of Drug-Resistant Influenza A Virus

Justin D. Hoopes; Elizabeth M. Driebe; Erin Kelley; David M. Engelthaler; Paul Keim; Alan S. Perelson; Libin Rong; Gregory T. Went; Jack Nguyen

Widespread resistance among circulating influenza A strains to at least one of the anti-influenza drugs is a major public health concern. A triple combination antiviral drug (TCAD) regimen comprised of amantadine, oseltamivir, and ribavirin has been shown to have synergistic and broad spectrum activity against influenza A strains, including drug resistant strains. Here, we used mathematical modeling along with three different experimental approaches to understand the effects of single agents, double combinations, and the TCAD regimen on resistance in influenza in vitro, including: 1) serial passage at constant drug concentrations, 2) serial passage at escalating drug concentrations, and 3) evaluation of the contribution of each component of the TCAD regimen to the suppression of resistance. Consistent with the modeling which demonstrated that three drugs were required to suppress the emergence of resistance in influenza A, treatment with the TCAD regimen resulted in the sustained suppression of drug resistant viruses, whereas treatment with amantadine alone or the amantadine-oseltamivir double combination led to the rapid selection of resistant variants which comprised ∼100% of the population. Furthermore, the TCAD regimen imposed a high genetic barrier to resistance, requiring multiple mutations in order to escape the effects of all the drugs in the regimen. Finally, we demonstrate that each drug in the TCAD regimen made a significant contribution to the suppression of virus breakthrough and resistance at clinically achievable concentrations. Taken together, these data demonstrate that the TCAD regimen was superior to double combinations and single agents at suppressing resistance, and that three drugs at a minimum were required to impede the selection of drug resistant variants in influenza A virus. The use of mathematical modeling with multiple experimental designs and molecular readouts to evaluate and optimize combination drug regimens for the suppression of resistance may be broadly applicable to other infectious diseases.


Antiviral Research | 2008

C3H/HeN mouse model for the evaluation of antiviral agents for the treatment of Venezuelan equine encephalitis virus infection

Justin G. Julander; Ramona T. Skirpstunas; Venkatraman Siddharthan; Kristiina Shafer; Justin D. Hoopes; Donald F. Smee; John D. Morrey

The TC-83 vaccine strain of Venezuelan equine encephalitis virus (VEEV) causes encephalitis and death in C3H/HeN mice infected by intranasal (i.n.) instillation. Since TC-83 is exempt as a select agent, this mouse model was used in the evaluation of antiviral therapies. Virus titers in the brains of infected mice peaked on 4 dpi and persisted at high levels until death at 9.4+/-0.5 dpi. Mouse brains appeared histologically normal on 2 dpi, but developed meningoencephalitis, neuropil vacuolation, and gliosis by 8 dpi. Results from a protein cytokine array showed significant elevations over time in interleukin (IL)-1alpha, IL-1beta, IL-6, IL-12, MCP-1, IFNgamma, TNFalpha, MIP-1alpha, and RANTES in homogenized brain samples of infected mice. Immunohistochemical staining showed a colocalization of viral antigen with neuron markers. Treatment with interferon-alpha B/D or ampligen significantly improved survival, brain virus titer and cytokine levels, mean day-to-death, and weight change in infected mice. The time-course of infection and disease parameters of mice infected with TC-83 VEEV were similar in many ways to disease parameters in mice infected with other VEEV strains. Thus, infection of C3H/HeN mice with TC-83 VEEV may serve as a suitable model for the evaluation of antiviral compounds for the treatment of this viral disease.


International Journal of Antimicrobial Agents | 2008

Differential pathogenesis of cowpox virus intranasal infections in mice induced by low and high inoculum volumes and effects of cidofovir treatment

Donald F. Smee; Brian B. Gowen; Miles K. Wandersee; Min-Hui Wong; Ramona T. Skirpstunas; Thomas J. Baldwin; Justin D. Hoopes; Robert W. Sidwell

The causes of death from intranasal cowpox virus infections in mice remain unclear. Hypotheses include severe pneumonitis, hepatitis and/or hyperproduction of cytokines and chemokines. This work explores these hypotheses by studying the influence of low- and high-volume virus inocula on viral pathogenesis. BALB/c mice were infected intranasally with a syncytium-forming variant of cowpox virus in 5 microL or 50 microL volumes containing the same infectious virus challenge dose. The 50 microL infection produced a more rapidly lethal disease associated with severe pneumonitis, high lung and nasal virus titres and increased cytokine and chemokine levels in the lungs and nasal tissue, whilst liver infection was minimal. The 5 microL inoculum infection was also lethal, but the infection was primarily confined to the upper respiratory tract and included elevated nasal cytokine and chemokine levels. Levels of the pro-inflammatory cytokine interleukin-6 were particularly high in both infections. Treatment of the infections with cidofovir (100mg/kg/day for 2 days starting 24h after virus exposure) led to survival and suppression of tissue virus titres. Treatment reduced pneumonitis in the 50 microL infection and lessened cytokine hyperproduction in both infections. We conclude that a 5 microL volume inoculum of cowpox virus causes a lethal upper respiratory tract infection, whilst the 50 microL inoculum targets both upper and lower respiratory tracts, with excessive release of systemic pro-inflammatory factors. Cidofovir effectively treated both infections and slowed viral replication sufficiently to subdue the exaggerated release of pro-inflammatory mediators.


Antiviral Chemistry & Chemotherapy | 2010

Induction of Interferon-γ-Inducible Protein 10 by SARS-CoV Infection, Interferon Alfacon 1 and Interferon Inducer in Human Bronchial Epithelial Calu-3 Cells and BALB/c Mice

Yohichi Kumaki; Craig W. Day; Kevin W. Bailey; Miles K. Wandersee; Min-Hui Wong; Jason R. Madsen; J. S. Madsen; N. M. Nelson; Justin D. Hoopes; John D. Woolcott; Tyler Z. Mclean; Lawrence M. Blatt; Andres M. Salazar; Donald F. Smee; Dale L. Barnard

Background: The pathogenesis of severe acute respiratory syndrome coronavirus (SARS-CoV) is poorly understood. Several mechanisms involving both direct effects on target cells and indirect effects via the immune system might exist. SARS-CoV has been shown in vitro to induce changes of cytokines and chemokines in various human and animal cells. We previously reported that interferon (IFN) alfacon-1 was more active against SARS-CoV infection in human bronchial epithelial Calu-3 cells than in African green monkey kidney epithelial cells on day 3 post-infection. Methods: In the current study, we first evaluated the efficacy of IFN-alfacon 1 in Calu-3 cells during the first 7 days of virus infection. We then used the two-antibody sandwich ELISA method to detect IFN-γ-inducible protein 10 (IP-10). We further evaluated the efficacy of antivirals directed against SARS-CoV infection in BALB/c mice. Results: A potent, prolonged inhibition of SARS-CoV replication in Calu-3 cells with IFN-alfacon 1 was observed. Furthermore, IP-10, an IFN-inducible leukocyte chemoattractant, was detected in Calu-3 cells after SARS-CoV infection. Interestingly, IP-10 expression was shown to be significantly increased when SARS-CoV-infected Calu-3 cells were treated with IFN alfacon-1. IP-10 expression was detected in the lungs of SARS-CoV-infected BALB/c mice. Significantly high levels of mouse IP-10 in BALB/c mice was also detected when SARS-CoV-infected mice were treated with the interferon inducer, polyriboinosinic-polyribocytidylic acid stabilized with poly-L-lysine and carboxymethyl cellulose (poly IC:LC). Treatment with poly IC:LC by intranasal route were effective in protecting mice against a lethal infection with mouse-adapted SARS-CoV and reduced the viral lung titres. Conclusion: Our data might provide an important insight into the mechanism of pathogenesis of SARS-CoV and these properties might be therapeutically advantageous.


Induction of IP-10 by SARS-CoV infection of Calu-3cells and BALB/c mice | 2010

Induction of IP-10 by SARS-CoV infection of Calu-3cells and BALB/c mice

Yohichi Kumaki; Craig W. Day; Kevin W. Bailey; Min-Hui Wong; Miles K. Wandersee; R. Madsen; J. S. Madsen; N. M. Nelson; Justin D. Hoopes; John D. Woolcott; Z. T. McLean; Lawrence M. Blatt; Andres M. Salazar; Dale L. Barnard


Antiviral Research | 2010

Triple Combination Antiviral Drug (TCAD) Regimen Composed of Amantadine, Ribavirin, and Oseltamivir Imposes a High Genetic Barrier to the Development of Resistance Against Influenza A Viruses In Vitro

Jack Nguyen; Justin D. Hoopes; Elizabeth M. Driebe; Kelly Sheff; David M. Engelthaler; Minh Thi Hong Le; Amy K. Patick

Collaboration


Dive into the Justin D. Hoopes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David M. Engelthaler

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar

Elizabeth M. Driebe

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge