Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Justin Gagnon is active.

Publication


Featured researches published by Justin Gagnon.


Science | 2008

Single-cycle nonlinear optics

Eleftherios Goulielmakis; Martin Schultze; Michael Hofstetter; Vladislav S. Yakovlev; Justin Gagnon; Matthias Uiberacker; Andy Aquila; Eric M. Gullikson; David T. Attwood; Reinhard Kienberger; Ferenc Krausz; Ulf Kleineberg

Nonlinear optics plays a central role in the advancement of optical science and laser-based technologies. We report on the confinement of the nonlinear interaction of light with matter to a single wave cycle and demonstrate its utility for time-resolved and strong-field science. The electric field of 3.3-femtosecond, 0.72-micron laser pulses with a controlled and measured waveform ionizes atoms near the crests of the central wave cycle, with ionization being virtually switched off outside this interval. Isolated sub-100-attosecond pulses of extreme ultraviolet light (photon energy ∼ 80 electron volts), containing ∼0.5 nanojoule of energy, emerge from the interaction with a conversion efficiency of ∼10–6. These tools enable the study of the precision control of electron motion with light fields and electron-electron interactions with a resolution approaching the atomic unit of time (∼24 attoseconds).


Science | 2010

Delay in Photoemission

Martin Schultze; Markus Fieß; Nicholas Karpowicz; Justin Gagnon; Michael Korbman; Michael Hofstetter; Stefan Neppl; Adrian L. Cavalieri; Yannis Komninos; Theodoros Mercouris; Cleanthes A. Nicolaides; Renate Pazourek; Stefan Nagele; Johannes Feist; Joachim Burgdörfer; Abdallah M. Azzeer; Ralph Ernstorfer; Reinhard Kienberger; Ulf Kleineberg; Eleftherios Goulielmakis; Ferenc Krausz; Vladislav S. Yakovlev

Defining Time-Zero When a high-energy photon hits an atom and is absorbed, the result can be the excitation and emission of an electron. This photoemission, or photoelectric effect, is generally assumed to occur instantaneously, and represents the definition of “time-zero” in clocking such ultrafast events. Schultze et al. (p. 1658, see the cover; see the Perspective by van der Hart) use ultrafast spectroscopy, with light pulses on the time scale of several tens of attoseconds, to test this assumption directly. They excite neon atoms with 100 eV photons and find that there is a small (20-attosecond) time delay between the emission of electrons from the 2s and 2p orbitals of the atoms. These results should have implications in modeling electron dynamics occurring on ultrafast time scales. Ultrafast metrology reveals a 20-attosecond delay between photoemission from different electronic orbitals in neon atoms. Photoemission from atoms is assumed to occur instantly in response to incident radiation and provides the basis for setting the zero of time in clocking atomic-scale electron motion. We used attosecond metrology to reveal a delay of 21±5 attoseconds in the emission of electrons liberated from the 2p orbitals of neon atoms with respect to those released from the 2s orbital by the same 100–electron volt light pulse. Small differences in the timing of photoemission from different quantum states provide a probe for modeling many-electron dynamics. Theoretical models refined with the help of attosecond timing metrology may provide insight into electron correlations and allow the setting of the zero of time in atomic-scale chronoscopy with a precision of a few attoseconds.


Science | 2011

Synthesized Light Transients

Adrian Wirth; Mohammed Hassan; Ivanka Grguraš; Justin Gagnon; Antoine Moulet; Tran Trung Luu; Stefan Pabst; Robin Santra; Z.A. Alahmed; Abdallah M. Azzeer; Vladislav S. Yakovlev; Volodymyr Pervak; Ferenc Krausz; Eleftherios Goulielmakis

Light spanning the near infrared to the ultraviolet has been confined in pulses shorter than a single optical cycle. Manipulation of electron dynamics calls for electromagnetic forces that can be confined to and controlled over sub-femtosecond time intervals. Tailored transients of light fields can provide these forces. We report on the generation of subcycle field transients spanning the infrared, visible, and ultraviolet frequency regimes with a 1.5-octave three-channel optical field synthesizer and their attosecond sampling. To demonstrate applicability, we field-ionized krypton atoms within a single wave crest and launched a valence-shell electron wavepacket with a well-defined initial phase. Half-cycle field excitation and attosecond probing revealed fine details of atomic-scale electron motion, such as the instantaneous rate of tunneling, the initial charge distribution of a valence-shell wavepacket, the attosecond dynamic shift (instantaneous ac Stark shift) of its energy levels, and its few-femtosecond coherent oscillations.


Review of Scientific Instruments | 2012

Invited Article: Attosecond photonics: Synthesis and control of light transients

Mohammed Hassan; Adrian Wirth; Ivanka Grguraš; Antoine Moulet; Tran Trung Luu; Justin Gagnon; Volodymyr Pervak; Eleftherios Goulielmakis

Ultimate control over light entails the capability of crafting its field waveform. Here, we detail the technological advances that have recently permitted the synthesis of light transients confinable to less than a single oscillation of its carrier wave and the precise attosecond tailoring of their fields. Our work opens the door to light field based control of electrons on the atomic, molecular, and mesoscopic scales.


Optics Express | 2011

Attosecond dispersion control by extreme ultraviolet multilayer mirrors

Michael Hofstetter; Martin Schultze; Markus Fieß; Benjamin Dennhardt; Alexander Guggenmos; Justin Gagnon; Vladislav S. Yakovlev; Eleftherios Goulielmakis; Reinhard Kienberger; Eric M. Gullikson; Ferenc Krausz; Ulf Kleineberg

We report the first experimental demonstration of a-periodic multilayer mirrors controlling the frequency sweep (chirp) of isolated attosecond XUV pulses. The concept was proven with about 200-attosecond pulses in the photon energy range of 100-130 eV measured via photoelectron streaking in neon. The demonstrated attosecond dispersion control is engineerable in a wide range of XUV photon energies and bandwidths. The resultant tailor-made attosecond pulses with highly enhanced photon flux are expected to significantly advance attosecond metrology and spectroscopy and broaden their range of applications.


Physical Review Letters | 2010

Attosecond Streaking Enables the Measurement of Quantum Phase

Vladislav S. Yakovlev; Justin Gagnon; Nicholas Karpowicz; Ferenc Krausz

Attosecond streaking, as a measurement technique, was originally conceived as a means to characterize attosecond light pulses, which is a good approximation if the relevant transition matrix elements are approximately constant within the bandwidth of the light pulse. Our analysis of attosecond streaking measurements on systems with a complex response to the photoionizing pulse reveals the relation between the momentum-space wave function of the outgoing electron and the result of conventional retrieval algorithms. This finding enables the measurement of the quantum phase associated with bound-continuum transitions.


Review of Scientific Instruments | 2010

Versatile apparatus for attosecond metrology and spectroscopy

Markus Fieß; Martin Schultze; Eleftherios Goulielmakis; B. Dennhardt; Justin Gagnon; Michael Hofstetter; Reinhard Kienberger; Ferenc Krausz

We present the AS-2 Attosecond Beamline at the Joint Laboratory for Attosecond Physics of the Max-Planck-Institut für Quantenoptik and Ludwig-Maximilians-Universität for time resolved pump/probe experiments with attosecond resolution. High harmonic generation and subsequent filtering of the generated extreme ultraviolet (XUV) continuum by means of metal filters and XUV multilayer mirrors serve for the generation of isolated attosecond laser pulses. After high harmonic generation, the remaining fundamental laser pulse is spatially separated from the attosecond XUV pulse, to what is to our knowledge for the first time, by means of a perforated mirror in a Mach-Zehnder interferometer. Active stabilization of this interferometer guarantees the necessary temporal resolution for tracking attosecond dynamics in real time. As a proof-of-principle, photoelectron streaking experiments are performed and experimental techniques for their realization are summarized. Finally we highlight the potential of the presented beamline system for future experiments in comparison with previously demonstrated attosecond beamlines.


Optics Express | 2009

The robustness of attosecond streaking measurements

Justin Gagnon; Vladislav S. Yakovlev

We investigate attosecond streaking measurements, where a spectrogram is described by an ensemble of electron wave packets. Such a description may be required for processes more complex than direct photoemission from an isolated atom; an ensemble of wave packets may also be needed to describe the role of shot-to-shot fluctuations or a non-uniform spatio-temporal profile of attosecond light pulses. Under these conditions, we examine the performance of conventional (FROG) analysis of attosecond streaking measurements.


New Journal of Physics | 2011

Lanthanum–molybdenum multilayer mirrors for attosecond pulses between 80 and 130 eV

Michael Hofstetter; Andy Aquila; Martin Schultze; Alexander Guggenmos; See-Hun Yang; Eric M. Gullikson; Martin Huth; Bert Nickel; Justin Gagnon; Vladislav S. Yakovlev; Eleftherios Goulielmakis; Ferenc Krausz; Ulf Kleineberg

A novel multilayer material system consisting of lanthanum and molybdenum nano-layers for both broadband and highly reflecting multilayer mirrors in the energy range between 80 and 130 eV is presented. The simulation and design of these multilayers were based on an improved set of optical constants, which were recorded by extreme ultraviolet (XUV)/soft-x-ray absorption measurements on freestanding lanthanum nano-films between 30 eV and 1.3 keV. Lanthanum–molybdenum (La/Mo) multilayer mirrors were produced by ion-beam sputtering and characterized through both x-ray and XUV reflectivity measurements. We demonstrate the ability to precisely simulate and realize aperiodic stacks. Their stability against ambient air conditions is demonstrated. Finally, the La/Mo mirrors were used in the generation of single attosecond pulses from high-harmonic cut-off spectra above 100 eV. Isolated 200 attosecond-long pulses were measured by XUV-pump/IR-probe streaking experiments and characterized using frequency-resolved optical gating for complete reconstruction of attosecond bursts (FROG/CRAB) analyses.


Journal of Physics B | 2008

Coincidence imaging of polyatomic molecules via laser-induced Coulomb explosion

Justin Gagnon; Kevin F. Lee; David M. Rayner; P. B. Corkum; V. R. Bhardwaj

We extend laser-induced Coulomb explosion imaging to retrieve the structure of the five-atom dichloromethane (CH2Cl2) molecule by developing coincidence imaging and geometry optimization techniques. By detecting all five atoms in coincidence, we show that, from the measured velocity vectors, the geometry of the molecules can be reconstructed.

Collaboration


Dive into the Justin Gagnon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge