Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Justin J. Rochford is active.

Publication


Featured researches published by Justin J. Rochford.


Nature Neuroscience | 2004

A de novo mutation affecting human TrkB associated with severe obesity and developmental delay

Giles S. H. Yeo; Chiao-Chien Connie Hung; Justin J. Rochford; Julia M. Keogh; Juliette Gray; Shoba Sivaramakrishnan; Stephen O'Rahilly; I. Sadaf Farooqi

An 8-year-old male with a complex developmental syndrome and severe obesity was heterozygous for a de novo missense mutation resulting in a Y722C substitution in the neurotrophin receptor TrkB. This mutation markedly impaired receptor autophosphorylation and signaling to MAP kinase. Mutation of NTRK2, which encodes TrkB, seems to result in a unique human syndrome of hyperphagic obesity. The associated impairment in memory, learning and nociception seen in the proband reflects the crucial role of TrkB in the human nervous system.


Journal of Cell Science | 2011

Adipogenesis at a glance

Christopher E. Lowe; Stephen O'Rahilly; Justin J. Rochford

The formation of adipocytes from precursor stem cells involves a complex and highly orchestrated programme of gene expression. Our understanding of the basic network of transcription factors that regulates adipogenesis has remained remarkably unchanged in recent years. However, this continues to be


Cell Metabolism | 2007

Serotonin 2C Receptor Agonists Improve Type 2 Diabetes via Melanocortin-4 Receptor Signaling Pathways

Ligang Zhou; Gregory M. Sutton; Justin J. Rochford; Robert K. Semple; Daniel D. Lam; Laura J. Oksanen; Zoë D. Thornton-Jones; Peter G. Clifton; Chen Yu Yueh; Mark L. Evans; Rory J. McCrimmon; Joel K. Elmquist; Andrew A. Butler; Lora K. Heisler

Summary The burden of type 2 diabetes and its associated premature morbidity and mortality is rapidly growing, and the need for novel efficacious treatments is pressing. We report here that serotonin 2C receptor (5-HT2CR) agonists, typically investigated for their anorectic properties, significantly improve glucose tolerance and reduce plasma insulin in murine models of obesity and type 2 diabetes. Importantly, 5-HT2CR agonist-induced improvements in glucose homeostasis occurred at concentrations of agonist that had no effect on ingestive behavior, energy expenditure, locomotor activity, body weight, or fat mass. We determined that this primary effect on glucose homeostasis requires downstream activation of melanocortin-4 receptors (MC4Rs), but not MC3Rs. These findings suggest that pharmacological targeting of 5-HT2CRs may enhance glucose tolerance independently of alterations in body weight and that this may prove an effective and mechanistically novel strategy in the treatment of type 2 diabetes.


Diabetes | 2008

The Human Lipodystrophy Gene BSCL2/Seipin May Be Essential for Normal Adipocyte Differentiation

Victoria A. Payne; Neil Grimsey; Antoinette Tuthill; Sam Virtue; Sarah L. Gray; Edoardo Dalla Nora; Robert K. Semple; Stephen O'Rahilly; Justin J. Rochford

OBJECTIVE—Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2) is a recessive disorder featuring near complete absence of adipose tissue. Remarkably, although the causative gene, BSCL2, has been known for several years, its molecular function and its role in adipose tissue development have not been elucidated. Therefore, we examined whether BSCL2 is involved in the regulation of adipocyte differentiation and the mechanism whereby pathogenic mutations in BSCL2 cause lipodystrophy. RESEARCH DESIGN AND METHODS—Following the characterization of BSCL2 expression in developing adipocytes, C3H10T1/2 mesenchymal stem cells were generated in which BSCL2 expression was knocked down using short hairpin RNA (shRNA). These cells were used to investigate whether BSCL2 is required for adipogenesis. BSCL2 constructs harboring pathogenic mutations known to cause lipodystrophy were also generated and characterized. RESULTS—BSCL2 expression was strongly induced during adipocyte differentiation, and the induction of BSCL2 expression was essential for adipogenesis to occur. The initial induction of key adipogenic transcription factors, including peroxisome proliferator–activated receptor (PPAR)γ and CAAT/enhancer-binding protein-α, was preserved in cells lacking BSCL2. However, the expression of these critical factors was not sustained, suggesting that the activity of PPARγ was impaired. Moreover, expression of key genes mediating triglyceride synthesis, including AGPAT2, lipin 1, and DGAT2, was persistently reduced and lipid accumulation was inhibited. Analysis of pathogenic missense mutants of BSCL2 revealed that the amino acid substitution A212P causes aberrant targeting of BSCL2 within the cell, suggesting that subcellular localization of BSCL2 may be critical to its function. CONCLUSIONS—This study demonstrates that BSCL2 is an essential, cell-autonomous regulator of adipogenesis.


Journal of Endocrinology | 2010

Lipodystrophy: metabolic insights from a rare disorder

Isabel Huang-Doran; Alison Sleigh; Justin J. Rochford; Stephen O'Rahilly; David B. Savage

Obesity, insulin resistance and their attendant complications are among the leading causes of morbidity and premature mortality today, yet we are only in the early stages of understanding the molecular pathogenesis of these aberrant phenotypes. A powerful approach has been the study of rare patients with monogenic syndromes that manifest as extreme phenotypes. For example, there are striking similarities between the biochemical and clinical profiles of individuals with excess fat (obesity) and those with an abnormal paucity of fat (lipodystrophy), including severe insulin resistance, dyslipidaemia, hepatic steatosis and features of hyperandrogenism. Rare lipodystrophy patients therefore provide a tractable genetically defined model for the study of a prevalent human disease phenotype. Indeed, as we review herein, detailed study of these syndromes is beginning to yield valuable insights into the molecular genetics underlying different forms of lipodystrophy, the essential components of normal adipose tissue development and the mechanisms by which disturbances in adipose tissue function can lead to almost all the features of the metabolic syndrome.


Journal of Biological Chemistry | 2008

Temporal and spatial regulation of the phosphatidate phosphatases lipin 1 and 2

Neil Grimsey; Gil-Soo Han; Laura O'Hara; Justin J. Rochford; George M. Carman; Symeon Siniossoglou

Lipins are the founding members of a novel family of Mg2+-dependent phosphatidate phosphatases (PAP1 enzymes) that play key roles in fat metabolism and lipid biosynthesis. Despite their importance, there is still little information on how their activity is regulated. Here we demonstrate that the functions of lipin 1 and 2 are evolutionarily conserved from unicellular eukaryotes to mammals. The two lipins display distinct intracellular localization in HeLa M cells, with a pool of lipin 2 exhibiting a tight membrane association. Small interfering RNA-mediated silencing of lipin 1 leads to a dramatic decrease of the cellular PAP1 activity in HeLa M cells, whereas silencing of lipin 2 leads to an increase of lipin 1 levels and PAP1 activity. Consistent with their distinct functions in HeLa M cells, lipin 1 and 2 exhibit reciprocal patterns of protein expression in differentiating 3T3-L1 adipocytes. Lipin 2 levels increase in lipin 1-depleted 3T3-L1 cells without rescuing the adipogenic defects, whereas depletion of lipin 2 does not inhibit adipogenesis. Finally, we show that the PAP1 activity of both lipins is inhibited by phosphorylation during mitosis, leading to a decrease in the cellular PAP1 activity during cell division. We propose that distinct and non-redundant functions of lipin 1 and 2 regulate lipid production during the cell cycle and adipocyte differentiation.


Biochemical Journal | 2010

C/EBP transcription factors regulate SREBP1c gene expression during adipogenesis

Victoria A. Payne; Wo‑Shing Au; Christopher E. Lowe; Shaikh Mizanoor Rahman; Jacob E. Friedman; Stephen O'Rahilly; Justin J. Rochford

The transcription factor SREBP1c (sterol-regulatory-element-binding protein 1c) is highly expressed in adipose tissue and plays a central role in several aspects of adipocyte development including the induction of PPARgamma (peroxisome-proliferator-activated receptor gamma), the generation of an endogenous PPARgamma ligand and the expression of several genes critical for lipid biosynthesis. Despite its significance, the regulation of SREBP1c expression during adipogenesis is not well characterized. We have noted that in several models of adipogenesis, SREBP1c expression closely mimics that of known C/EBPbeta (CCAAT/enhancer-binding protein beta) targets. Inhibition of C/EBP activity during adipogenesis by expressing either the dominant-negative C/EBPbeta LIP (liver-enriched inhibitory protein) isoform, the co-repressor ETO (eight-twenty one/MTG8) or using siRNAs (small interfering RNAs) targeting either C/EBPbeta or C/EBPdelta significantly impaired early SREBP1c induction. Furthermore, ChIP (chromatin immunoprecipitation) assays identified specific sequences in the SREBP1c promoter to which C/EBPbeta and C/EBPdelta bind in intact cells, demonstrating that these factors may directly regulate SREBP1c expression. Using cells in which C/EBPalpha expression is inhibited using shRNA (short hairpin RNA) and ChIP assays we show that C/EBPalpha replaces C/EBPbeta and C/EBPdelta as a regulator of SREBP1c expression in maturing adipocytes. These results provide novel insight into the induction of SREBP1c expression during adipogenesis. Moreover, the findings of the present study identify an important additional mechanism via which the C/EBP transcription factors may control a network of gene expression regulating adipogenesis, lipogenesis and insulin sensitivity.


Molecular and Cellular Biology | 2004

ETO/MTG8 Is an Inhibitor of C/EBPβ Activity and a Regulator of Early Adipogenesis

Justin J. Rochford; Robert K. Semple; Matthias Laudes; Keith B. Boyle; Constantinos Christodoulides; Claire Mulligan; Christopher J. Lelliott; Sven Schinner; Dirk Hadaschik; Meera Mahadevan; Jaswinder K. Sethi; Antonio Vidal-Puig; Stephen O'Rahilly

ABSTRACT The putative transcriptional corepressor ETO/MTG8 has been extensively studied due to its involvement in a chromosomal translocation causing the t(8;21) form of acute myeloid leukemia. Despite this, the role of ETO in normal physiology has remained obscure. Here we show that ETO is highly expressed in preadipocytes and acts as an inhibitor of C/EBPβ during early adipogenesis, contributing to its characteristically delayed activation. ETO prevents both the transcriptional activation of the C/EBPα promoter by C/EBPβ and its concurrent accumulation in centromeric sites during early adipogenesis. ETO expression rapidly reduces after the initiation of adipogenesis, and this is essential to the normal induction of adipogenic gene expression. These findings define, for the first time, a molecular role for ETO in normal physiology as an inhibitor of C/EBPβ and a novel regulator of early adipogenesis.


Proceedings of the National Academy of Sciences of the United States of America | 2009

A truncation mutation in TBC1D4 in a family with acanthosis nigricans and postprandial hyperinsulinemia

Satya Dash; H. Sano; Justin J. Rochford; Robert K. Semple; Giles S. H. Yeo; C. S. S. Hyden; Maria A. Soos; Jonathan Clark; A. Rodin; Claudia Langenberg; C. Druet; Katherine Fawcett; Yi-Chun Loraine Tung; Nicholas J. Wareham; Inês Barroso; Gustav E. Lienhard; Stephen O'Rahilly; David B. Savage

Tre-2, BUB2, CDC16, 1 domain family member 4 (TBC1D4) (AS160) is a Rab-GTPase activating protein implicated in insulin-stimulated glucose transporter 4 (GLUT4) translocation in adipocytes and myotubes. To determine whether loss-of-function mutations in TBC1D4 might impair GLUT4 translocation and cause insulin resistance in humans, we screened the coding regions of this gene in 156 severely insulin-resistant patients. A female presenting at age 11 years with acanthosis nigricans and extreme postprandial hyperinsulinemia was heterozygous for a premature stop mutation (R363X) in TBC1D4. After demonstrating reduced expression of wild-type TBC1D4 protein and expression of the truncated protein in lymphocytes from the proband, we further characterized the biological effects of the truncated protein in 3T3L1 adipocytes. Prematurely truncated TBC1D4 protein tended to increase basal cell membrane GLUT4 levels (P = 0.053) and significantly reduced insulin-stimulated GLUT4 cell membrane translocation (P < 0.05). When coexpressed with wild-type TBC1D4, the truncated protein dimerized with full-length TBC1D4, suggesting that the heterozygous truncated variant might interfere with its wild-type counterpart in a dominant negative fashion. Two overweight family members with the mutation also manifested normal fasting glucose and insulin levels but disproportionately elevated insulin levels following an oral glucose challenge. This family provides unique genetic evidence of TBC1D4 involvement in human insulin action.


Journal of Biological Chemistry | 2007

SEQUENTIAL REGULATION OF DGAT2 EXPRESSION BY C/EBPβ AND C/EBPα DURING ADIPOGENESIS

Victoria A. Payne; Wo-Shing Au; Sarah L. Gray; Edoardo Dalla Nora; Shaikh Mizanoor Rahman; Rebecca D. Sanders; Dirk Hadaschik; Jacob E. Friedman; Stephen O'Rahilly; Justin J. Rochford

Diacylglycerol acyltransferase 2 (DGAT2) catalyzes the final step of triacylglycerol (TG) synthesis. Despite the existence of an alternative acyltransferase (DGAT1), mice lacking DGAT2 have a severe deficiency of TG in adipose tissue, indicating a nonredundant role for this enzyme in adipocyte TG synthesis. We have studied the regulation of DGAT2 expression during adipogenesis. In both isolated murine preadipocytes and 3T3-L1 cells the temporal pattern of DGAT2 expression closely mimicked that of genes whose expression is regulated by CAAT/enhancer-binding protein β (C/EBPβ). Inhibition of C/EBPβ expression in differentiating preadipocytes reduced DGAT2 expression, and electrophoretic mobility shift assay and chromatin immunoprecipitation experiments identified a promoter element in the DGAT2 gene that is likely to mediate this effect. The importance of C/EBPβ in adipocyte expression of DGAT2 was confirmed by the finding of reduced DGAT2 expression in the adipose tissue of C/EBPβ-null animals. However, DGAT2 expression is maintained at high levels during the later stages of adipogenesis, when C/EBPβ levels decline. We show that, at these later stages of differentiation, C/EBPα is capable of substituting for C/EBPβ at the same promoter element. These observations provide novel insight into the transcriptional regulation of DGAT2 expression. Moreover, they further refine the complex and serial roles of the C/EBP family of transcription factors in inducing and maintaining the metabolic properties of mature adipocytes.

Collaboration


Dive into the Justin J. Rochford's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge