Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Justin L. Payne is active.

Publication


Featured researches published by Justin L. Payne.


Geological Society, London, Special Publications | 2009

Correlations and reconstruction models for the 2500-1500 Ma evolution of the Mawson Continent

Justin L. Payne; Martin Hand; Karin M. Barovich; Anthony Reid; David A.D. Evans

Abstract Continental lithosphere formed and reworked during the Palaeoproterozoic era is a major component of pre-1070 Ma Australia and the East Antarctic Shield. Within this lithosphere, the Mawson Continent encompasses the Gawler–Adélie Craton in southern Australia and Antarctica, and crust of the Miller Range, Transantarctic Mountains, which are interpreted to have assembled during c. 1730–1690 Ma tectonism of the Kimban–Nimrod–Strangways orogenies. Recent geochronology has strengthened correlations between the Mawson Continent and Shackleton Range (Antarctica), but the potential for Meso- to Neoproterozoic rifting and/or accretion events prevent any confident extension of the Mawson Continent to include the Shackleton Range. Proposed later addition (c. 1600–1550 Ma) of the Coompana Block and its Antarctic extension provides the final component of the Mawson Continent. A new model proposed for the late Archaean to early Mesoproterozoic evolution of the Mawson Continent highlights important timelines in the tectonic evolution of the Australian lithosphere. The Gawler–Adélie Craton and adjacent Curnamona Province are interpreted to share correlatable timelines with the North Australian Craton at c. 2500–2430 Ma, c. 2000 Ma, 1865–1850 Ma, 1730–1690 Ma and 1600–1550 Ma. These common timelines are used to suggest the Gawler–Adélie Craton and North Australian Craton formed a contiguous continental terrain during the entirety of the Palaeoproterozoic. Revised palaeomagnetic constraints for global correlation of proto-Australia highlight an apparently static relationship with northwestern Laurentia during the c. 1730–1590 Ma time period. These data have important implications for many previously proposed reconstruction models and are used as a primary constraint in the configuration of the reconstruction model proposed herein. This palaeomagnetic link strengthens previous correlations between the Wernecke region of northwestern Laurentia and terrains in the eastern margin of proto-Australia.


Australian Journal of Earth Sciences | 2008

Temporal constraints on the timing of high-grade metamorphism in the northern Gawler Craton: implications for assembly of the Australian Proterozoic

Justin L. Payne; Martin Hand; Karin M. Barovich; Benjamin Wade

LA-ICPMS U–Pb data from metamorphic monazite in upper amphibolite and granulite-grade metasedimentary rocks indicate that the Nawa Domain of the northern Gawler Craton in southern Australia underwent multiple high-grade metamorphic events in the Late Paleoproterozoic and Early Mesoproterozoic. Five of the six samples investigated here record metamorphic monazite growth during the period 1730–1690 Ma, coincident with the Kimban Orogeny, which shaped the crustal architecture of the southeastern Gawler Craton. Combined with existing detrital zircon U–Pb data, the metamorphic monazite ages constrain deposition of the northern Gawler metasedimentary protoliths to the interval ca 1750–1720 Ma. The new age data highlight the craton-wide nature of the 1730–1690 Ma Kimban Orogeny in the Gawler Craton. In the Mabel Creek Ridge region of the Nawa Domain, rocks metamorphosed during the Kimban Orogeny were reworked during the Kararan Orogeny (1570–1555 Ma). The obtained Kararan Orogeny monazite ages are within uncertainty of ca 1590–1575 Ma zircon U–Pb metamorphic ages from the Mt Woods Domain in the central-eastern Gawler Craton, which indicate that high-grade metamorphism and associated deformation were coeval with the craton-scale Hiltaba magmatic event. The timing of this deformation, and the implied compressional vector, is similar to the latter stages of the Olarian Orogeny in the adjacent Curnamona Province and appears to be part of a westward migration in the timing of deformation and metamorphism in the southern Australian Proterozoic over the interval 1600–1545 Ma. This pattern of westward-shifting tectonism is defined by the Olarian Orogeny (1600–1585 Ma, Curnamona Province), Mt Woods deformation (1590–1575 Ma), Mabel Creek Ridge deformation (1570–1555 Ma, Kararan Orogeny) and Fowler Domain deformation (1555–1545 Ma, Kararan Orogeny). This westward migration of deformation suggests the existence of a large evolving tectonic system that encompassed the emplacement of the voluminous Hiltaba Suite and associated volcanic and mineral systems.


Geological Society of America Bulletin | 2014

Detrital zircons in basement metasedimentary protoliths unveil the origins of southern India

Diana Plavsa; Alan S. Collins; Justin L. Payne; John Foden; Chris Clark; M. Santosh

Coupled U-Pb and Hf isotopic analysis of detrital zircons from metasedimentary rocks of the Southern Granulite terrane (India) provides provenance information that helps unravel their paleotectonic position before Gondwana amalgamated. The metasedimentary packages of the Salem block (southernmost extension of Dharwar craton) record a restricted juvenile late Archean to early Paleoproterozoic (2.7–2.45 Ga) source provenance and epsilon Hf values between +0.3 and +8.8. Similar late Archean juvenile crust is found throughout the Dharwar craton and represents a likely source for the Salem block metasedimentary rocks. By contrast, the metasedimentary rocks of the Madurai block (south of the Salem block) show a predominantly Archean to Paleoproterozoic provenance (3.2–1.7 Ga) in the northern part of the Madurai block and a largely late Mesoproterozoic to Neoproterozoic provenance (1.1–0.65 Ga) in the southern part of the Madurai block. Collectively, the Madurai block metasedimentary rocks record a mixture of reworked Archean and Paleoproterozoic sources, as well as juvenile Paleoproterozoic, late Mesoproterozoic, and evolved Neoproterozoic sources. These detrital signatures best fit the combined basement ages of the Congo-Tanzania-Bangweulu block and central Madagascar (Azania), thus linking the tectonic evolution of the southernmost tip of India to these domains throughout much of the Proterozoic. The diachroneity of metamorphic ages obtained from the rims of Madurai block detrital zircons attests to their poly-metamorphic history that is different from that of the Salem block. The contrasting metamorphic and depositional histories between the Salem and Madurai blocks place them on opposite sides of the Mozambique Ocean until the latest Neoproterozoic when they came together to form Gondwana.


Geology | 2012

High-pressure granulites at the dawn of the Proterozoic

Jade R. Anderson; Justin L. Payne; David E. Kelsey; Martin Hand; Alan S. Collins; M. Santosh

ABSTRACTHigh-pressure metamorphism is uncommon in the ancient geo-logical record. Kanja Malai, in the Salem crustal block (southern India), contains high-pressure kyanite-garnet − bearing felsic granu-lites that equilibrated at 14–16 kbar and ~820–860 °C. Laser abla-tion − inductively coupled plasma − mass spectrometry U-Pb zircon and in situ monazite geochronology indicate that these assemblages grew ca. 2490 Ma. These pressure-temperature-time constraints pro-vide a rare record indicating that thickened crust and low apparent thermal gradient conditions existed during the Archean-Proterozoic transition, a period of Earth history for which the rock record com-monly preserves evidence for comparatively high apparent thermal gradients. The thermal regimes required to generate these metamor-phic conditions are typical of collisional orogenesis, and suggest that the continental lithosphere was capable of supporting crustal thick-ening to ≥ 45–50 km. Such crustal thickening provides supporting evi-dence that tectonic regimes similar to modern Earth–style tectonics were in operation at the Archean-Proterozoic transition.INTRODUCTION


Geology | 2014

A Proterozoic Wilson cycle identified by Hf isotopes in central Australia: Implications for the assembly of Proterozoic Australia and Rodinia

R. Smits; William J. Collins; Martin Hand; Rian A. Dutch; Justin L. Payne

Current models for the assembly of Proterozoic Australia suggest that the North Australian craton (NAC), West Australian craton (WAC), and South Australian craton (SAC) had amalgamated by at least 1.6 Ga, with possible rafting and reattachment of the SAC by ca. 1.3 Ga. In this scenario, the younger (1.2–1.1 Ga) Grenvillian-aged Musgrave Province of central Australia, which separates all three cratons, has been considered postcollisional to intracratonic. However, new and recent U-Pb and Lu-Hf isotopic analyses of zircons from the Musgrave Province indicate continuous active-margin magmatic activity between 1.7 and 1.2 Ga. A distinctive inverted U-shaped pattern of the Hf array for this 500 m.y. period is evidence of part of a Proterozoic Wilson cycle, with subduction initiation at 1.7 Ga and eventual ocean closure by 1.2 Ga. We estimate that the cycle began at 2.2 Ga. Overlap of the Musgrave zircon age spectra and Hf isotopic array with the along-strike Albany-Fraser orogen (AFO) suggests derivation of the Musgrave Province from the WAC, not the NAC or SAC as previously thought. The Musgrave Province link to the WAC confirms that Australia did not assemble until at least early Grenvillian time (ca. 1.2 Ga). Moreover, because the SAC was part of the much larger Mawson continent, the 1.2 Ga collision was of transcontinental magnitude similar to that of the type-Grenville orogen in Laurentia. This favors an Australia-Mexico (AUSMEX) configuration at 1.2 Ga, rather than the southwestern United States and East Antarctica (SWEAT) or Proterozoic Australia–western United States (AUSWUS) models. The Musgrave-AFO marks a major, underestimated phase of Rodinian assembly.


Geology | 2013

Zn isotope evidence for immediate resumption of primary productivity after snowball Earth

Marcus Kunzmann; Galen P. Halverson; Paolo A. Sossi; Timothy D. Raub; Justin L. Payne; Jason K. Kirby

The Ediacaran period began with the deglaciation of the ca. 635 Ma Marinoan snowball Earth and the deposition of cap dolostones on continental shelves worldwide during post-glacial sea-level rise. These carbonates sharply overlie glacial sediments deposited at low paleolatitudes and preserve negative carbon isotope excursions. The snowball Earth hypothesis invokes an almost complete cessation of primary productivity in the surface ocean. Because assimilatory uptake of Zn appears to fractionate its isotopes, Zn isotope ratios measured in carbonate precipitated in the surface ocean should track fluctuations in primary productivity. Here we report the first Zn isotopic data, together with carbon and oxygen isotopic profiles from a Neoproterozoic cap dolostone, the Nuccaleena Formation in the Flinders Ranges, South Australia. We interpret the Zn isotopic data in terms of a two-stage evolution of the deglacial ocean. Slightly ^(66)Zn-enriched values at the base of the cap dolostone indicate immediate resumption of the biological pump upon melting of the surface ocean, but this signal was diluted by intense surface runoff that drove δ^(66)Zn (^(66)Zn/^(64)Zn, versus the JMC Lyon reference) values down to the composition of continentally derived Zn. A subsequent rise in δ^(66)Zn records a vigorous increase in primary production and export from a nutrient-laden surface ocean.


Geology | 2009

Magnetotelluric constraints on subduction polarity: Reversing reconstruction models for Proterozoic Australia

Kate Selway; Martin Hand; Graham Heinson; Justin L. Payne

Two-dimensional, lithospheric-scale magnetotelluric imaging in the central Australian Proterozoic has constrained the large-scale architecture of terrane assembly during Paleoproterozoic accretion and collision. The comparatively conductive North Australian craton, consisting of rocks between ~2500 and 1730 Ma in age, has been imaged to extend for 150 km under the 1690–1620 Ma Warumpi Province, which forms part of a large, comparatively juvenile terrane in central-southern Australia. Collision between the North Australia craton and Warumpi Province occurred ca. 1640 Ma. The boundary between these domains is modeled to be subvertical at crustal scale, but dips south at ~45° in the mantle to depths of 150 km. We interpret this geometry to reflect lithospheric-scale underthrusting of the North Australian craton beneath the Warumpi Province, and suggest that it provides a first-order constraint on subduction polarity during collision ca. 1640 Ma. In contrast, most contemporary models for the evolution of Paleoproterozoic Australia propose that the North Australian craton was located on the overriding plate of a long-lived (ca. 1800–1550 Ma) north-directed subduction system. The polarity of these models is not consistent with the lithospheric-scale geophysical architecture.


Geological Society of America Bulletin | 2015

Age and provenance of the Cryogenian to Cambrian passive margin to foreland basin sequence of the northern Paraguay Belt, Brazil

Ben McGee; Alan S. Collins; Ricardo I. F. Trindade; Justin L. Payne

The Paraguay Belt in central South America developed in response to the collision of the Amazonian craton, the Sao Francisco craton, and the Paranapanema block. The alleged “Brasiliano” age (ca. 620 Ma) of orogenesis has recently been questioned by paleomagnetic and radioisotopic ages that indicate the closing stages of orogenesis occurred well into the Cambrian. We investigated the timing of deposition and source areas for these sedimentary rocks overlying the Amazonian craton using integrated U-Pb and Hf isotope data of detrital zircons from within this sequence. In total, 742 detrital zircon U-Pb ages were analyzed from samples taken from the base to the top of this sedimentary succession. Maximum depositional ages from the uppermost part of this sequence of rocks, the Diamantino Formation, indicate that final deposition began no earlier than 560 ± 13 Ma and possibly as young as the Cambrian. Given that zircon inheritance in these rocks continues up until this age and that known Amazonian craton ages are older than ca. 950 Ma, we considered other potential sources for these sediments. This was achieved by integrating the U-Pb detrital zircon data with Hf isotopic data from these zircons that have e Hf values ranging from −18 to 12. The e Hf signature is consistent, with a predominantly Amazonian source until the early Neoproterozoic, at which point the signal becomes significantly more evolved. These data, when combined with other evidence discussed here, are consistent with an ocean to the east of the present-day Amazonian craton that did not close until the latest Ediacaran–Cambrian.


Journal of Analytical Atomic Spectrometry | 2013

Reassessment of relative oxide formation rates and molecular interferences on in situ lutetium–hafnium analysis with laser ablation MC-ICP-MS

Justin L. Payne; Norman J. Pearson; Kevin J. Grant; Galen P. Halverson

A series of Hf and rare earth element (REE) solutions and glass beads have been produced in order to assess the influence of isobaric and molecular interferences on LA-MC-ICP-MS analysis of Lu–Hf isotopes in zircon. We demonstrate the capability to accurately correct for isobaric interferences of 176Yb on 176Hf at levels up to 176Yb/177Hf = 0.6 in solution mode. When using laser ablation sample introduction and REE–Hf doped glass beads we are able to accurately correct for 176Yb interferences up to 176Yb/177Hf = 0.15. These thresholds exceed the 176Yb/177Hf ratios in most natural zircon and demonstrate the general robustness of the method. Unlike solution analysis, at extreme Yb interference levels (176Yb/177Hf ≈ 0.8) there appears to be a slight over-correction of Yb interferences. We demonstrate using theoretical calculations that for high-REE zircons, even modest oxide formation rates can lead to inaccurate 176Hf/177Hf ratios. This finding is confirmed by data collected on REE-doped glass beads and a natural zircon sample. Importantly, Gd oxides dominate over Dy oxides as a source of molecular interferences on Hf isotope data because Gd is more prone to oxide formation. Oxide formation rates vary depending upon sample introduction, instrument tuning and N2 addition (in laser mode). Correction for molecular interferences is possible using a dynamic analysis routine but requires measurement of the relative Gd and Hf oxide formation rates for the analysis session. Hence the daily monitoring of Gd and Hf oxide formation rates will improve the accuracy of Lu–Hf LA-MC-ICP-MS results for high-REE/Hf zircons.


Australian Journal of Earth Sciences | 2011

U–Pb zircon, zircon Hf and whole-rock Sm–Nd isotopic constraints on the evolution of Paleoproterozoic rocks in the northern Gawler Craton

Katherine E. Howard; Martin Hand; Karin M. Barovich; Justin L. Payne; Kathryn Cutts; Elena Belousova

U–Pb zircon analyses from a series of orthogneisses sampled in drill core in the northern Gawler Craton provide crystallisation ages at ca 1775–1750 Ma, which is an uncommon age in the Gawler Craton. Metamorphic zircon and monazite give ages of ca 1730–1710 Ma indicating that the igneous protoliths underwent metamorphism during the craton-wide Kimban Orogeny. Isotopic Hf zircon data show that 1780–1750 Ma zircons are somewhat evolved with initial εHf values –4 to +0.9, and model ages of ca 2.3 to 2.2 Ga. Isotopic whole rock Sm–Nd values from most samples have relatively evolved initial εNd values of –3.7 to –1.4. In contrast, a mafic unit from drill hole Middle Bore 1 has a juvenile isotopic signature with initial εHf zircon values of ca +5.2 to +8.2, and initial εNd values of ∼+3.5 to +3.8. The presence of 1775–1750 Ma zircon forming magmatic rocks in the northern Gawler Craton provides a possible source for similarly aged detrital zircons in Paleoproterozoic basin systems of the Gawler Craton and adjacent Curnamona Province. Previous provenance studies on these Paleoproterozoic basins have appealed to the Arunta Region of the North Australian Craton to provide 1780–1750 Ma detrital zircons, and isotopically and geochemically similar basin fill. The orthogneisses in the northern Gawler Craton also match the source criteria and display geochemical similarities between coeval magmatism in the Arunta Region of the North Australian Craton, providing further support for paleogeographic reconstructions that link the Gawler Craton and North Australian Craton during the Paleoproterozoic.

Collaboration


Dive into the Justin L. Payne's collaboration.

Top Co-Authors

Avatar

Martin Hand

University of Adelaide

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Foden

University of Adelaide

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge