Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Justin M. Kollman is active.

Publication


Featured researches published by Justin M. Kollman.


Nature Reviews Molecular Cell Biology | 2011

Microtubule nucleation by γ-tubulin complexes

Justin M. Kollman; Andreas Merdes; Lionel Mourey; David A. Agard

Microtubule nucleation is regulated by the γ-tubulin ring complex (γTuRC) and related γ-tubulin complexes, providing spatial and temporal control over the initiation of microtubule growth. Recent structural work has shed light on the mechanism of γTuRC-based microtubule nucleation, confirming the long-standing hypothesis that the γTuRC functions as a microtubule template. The first crystallographic analysis of a non-γ-tubulin γTuRC component (γ-tubulin complex protein 4 (GCP4)) has resulted in a new appreciation of the relationships among all γTuRC proteins, leading to a refined model of their organization and function. The structures have also suggested an unexpected mechanism for regulating γTuRC activity via conformational modulation of the complex component GCP3. New experiments on γTuRC localization extend these insights, suggesting a direct link between its attachment at specific cellular sites and its activation.


Biochemistry | 2009

Crystal structure of human fibrinogen.

Justin M. Kollman; Leela Pandi; Michael R. Sawaya; Marcia Riley; Russell F. Doolittle

A crystal structure of human fibrinogen has been determined at approximately 3.3 A resolution. The protein was purified from human blood plasma, first by a cold ethanol precipitation procedure and then by stepwise chromatography on DEAE-cellulose. A product was obtained that was homogeneous on SDS-polyacrylamide gels. Nonetheless, when individual crystals used for X-ray diffraction were examined by SDS gel electrophoresis after data collection, two species of alpha chain were present, indicating that some proteolysis had occurred during the course of operations. Amino-terminal sequencing on post-X-ray crystals showed mostly intact native alpha- and gamma-chain sequences (the native beta chain is blocked). The overall structure differs from that of a native fibrinogen from chicken blood and those reported for a partially proteolyzed bovine fibrinogen in the nature of twist in the coiled-coil regions, likely due to weak forces imparted by unique crystal packing. As such, the structure adds to the inventory of possible conformations that may occur in solution. Other features include a novel interface with an antiparallel arrangement of beta chains and a unique tangential association of coiled coils from neighboring molecules. The carbohydrate groups attached to beta chains are unusually prominent, the full sweep of 11 sugar residues being positioned. As was the case for native chicken fibrinogen, no resolvable electron density could be associated with alphaC domains.


Nature | 2010

Microtubule nucleating γTuSC assembles structures with 13-fold microtubule-like symmetry

Justin M. Kollman; Jessica K. Polka; Alex Zelter; Trisha N. Davis; David A. Agard

Microtubules are nucleated in vivo by γ-tubulin complexes. The 300-kDa γ-tubulin small complex (γ-TuSC), consisting of two molecules of γ-tubulin and one copy each of the accessory proteins Spc97 and Spc98, is the conserved, essential core of the microtubule nucleating machinery. In metazoa multiple γ-TuSCs assemble with other proteins into γ-tubulin ring complexes (γ-TuRCs). The structure of γ-TuRC indicated that it functions as a microtubule template. Because each γ-TuSC contains two molecules of γ-tubulin, it was assumed that the γ-TuRC-specific proteins are required to organize γ-TuSCs to match 13-fold microtubule symmetry. Here we show that Saccharomyces cerevisiae γ-TuSC forms rings even in the absence of other γ-TuRC components. The yeast adaptor protein Spc110 stabilizes the rings into extended filaments and is required for oligomer formation under physiological buffer conditions. The 8-Å cryo-electron microscopic reconstruction of the filament reveals 13 γ-tubulins per turn, matching microtubule symmetry, with plus ends exposed for interaction with microtubules, implying that one turn of the filament constitutes a microtubule template. The domain structures of Spc97 and Spc98 suggest functions for conserved sequence motifs, with implications for the γ-TuRC-specific proteins. The γ-TuSC filaments nucleate microtubules at a low level, and the structure provides a strong hypothesis for how nucleation is regulated, converting this less active form to a potent nucleator.


eLife | 2014

Large-scale filament formation inhibits the activity of CTP synthetase

Rachael M. Barry; Anne-Florence Bitbol; Alexander Lorestani; Emeric J Charles; Chris Habrian; Jesse M. Hansen; Hsin-Jung Li; Enoch P. Baldwin; Ned S. Wingreen; Justin M. Kollman; Zemer Gitai

CTP Synthetase (CtpS) is a universally conserved and essential metabolic enzyme. While many enzymes form small oligomers, CtpS forms large-scale filamentous structures of unknown function in prokaryotes and eukaryotes. By simultaneously monitoring CtpS polymerization and enzymatic activity, we show that polymerization inhibits activity, and CtpSs product, CTP, induces assembly. To understand how assembly inhibits activity, we used electron microscopy to define the structure of CtpS polymers. This structure suggests that polymerization sterically hinders a conformational change necessary for CtpS activity. Structure-guided mutagenesis and mathematical modeling further indicate that coupling activity to polymerization promotes cooperative catalytic regulation. This previously uncharacterized regulatory mechanism is important for cellular function since a mutant that disrupts CtpS polymerization disrupts E. coli growth and metabolic regulation without reducing CTP levels. We propose that regulation by large-scale polymerization enables ultrasensitive control of enzymatic activity while storing an enzyme subpopulation in a conformationally restricted form that is readily activatable. DOI: http://dx.doi.org/10.7554/eLife.03638.001


Journal of Bacteriology | 2009

The Structure and Assembly Dynamics of Plasmid Actin AlfA Imply a Novel Mechanism of DNA Segregation

Jessica K. Polka; Justin M. Kollman; David A. Agard; R. Dyche Mullins

Bacterial cytoskeletal proteins participate in a variety of processes, including cell division and DNA segregation. Polymerization of one plasmid-encoded, actin-like protein, ParM, segregates DNA by pushing two plasmids in opposite directions and forms the current paradigm for understanding active plasmid segregation. An essential feature of ParM assembly is its dynamically instability, the stochastic switching between growth and disassembly. It is unclear whether dynamic instability is an essential feature of all actin-like protein-based segregation mechanisms or whether bacterial filaments can segregate plasmids by different mechanisms. We expressed and purified AlfA, a plasmid-segregating actin-like protein from Bacillus subtilis, and found that it forms filaments with a unique structure and biochemistry; AlfA nucleates rapidly, polymerizes in the presence of ATP or GTP, and forms highly twisted, ribbon-like, helical filaments with a left-handed pitch and protomer nucleotide binding pockets rotated away from the filament axis. Intriguingly, AlfA filaments spontaneously associate to form uniformly sized, mixed-polarity bundles. Most surprisingly, our biochemical characterization revealed that AlfA does not display dynamic instability and is relatively stable in the presence of diphosphate nucleotides. These results (i) show that there is remarkable structural diversity among bacterial actin filaments and (ii) indicate that AlfA filaments partition DNA by a novel mechanism.


Nature Structural & Molecular Biology | 2015

Ring closure activates yeast γTuRC for species-specific microtubule nucleation

Justin M. Kollman; Charles H. Greenberg; Sam Li; Michelle Moritz; Alex Zelter; Kimberly K. Fong; José Jesús Fernández; Andrej Sali; John Kilmartin; Trisha N. Davis; David A. Agard

The γ-tubulin ring complex (γTuRC) is the primary microtubule nucleator in cells. γγTuRC is assembled from repeating γγ-tubulin small complex (γTuSC) subunits and is thought to function as a template by presenting a γ-tubulin ring that mimics microtubule geometry. However, a previous yeast γTuRC structure showed γTuSC in an open conformation that prevents matching to microtubule symmetry. By contrast, we show here that γ-tubulin complexes are in a closed conformation when attached to microtubules. To confirm the functional importance of the closed γTuSC ring, we trapped the closed state and determined its structure, showing that the γ-tubulin ring precisely matches microtubule symmetry and providing detailed insight into γTuRC architecture. Importantly, the closed state is a stronger nucleator, thus suggesting that this conformational switch may allosterically control γTuRC activity. Finally, we demonstrate that γTuRCs have a strong preference for tubulin from the same species.


Journal of Biological Chemistry | 2013

The bacterial actin MamK: in vitro assembly behavior and filament architecture

Ertan Ozyamak; Justin M. Kollman; David A. Agard; Arash Komeili

Background: The bacterial actin MamK is involved in the organization of bacterial organelles called magnetosomes. Results: MamK is an ATPase and assembles into filaments with a unique architecture. Conclusion: MamK shares features of structure and assembly with other bacterial actin homologs, and it has some unique features of its own. Significance: This work will guide future studies to unravel molecular mechanisms underlying MamK function in vivo. It is now recognized that actin-like proteins are widespread in bacteria and, in contrast to eukaryotic actins, are highly diverse in sequence and function. The bacterial actin, MamK, represents a clade, primarily found in magnetotactic bacteria, that is involved in the proper organization of subcellular organelles, termed magnetosomes. We have previously shown that MamK from Magnetospirillum magneticum AMB-1 (AMB-1) forms dynamic filaments in vivo. To gain further insights into the molecular mechanisms that underlie MamK dynamics and function, we have now studied the in vitro properties of MamK. We demonstrate that MamK is an ATPase that, in the presence of ATP, assembles rapidly into filaments that disassemble once ATP is depleted. The mutation of a conserved active site residue (E143A) abolishes ATPase activity of MamK but not its ability to form filaments. Filament disassembly depends on both ATPase activity and potassium levels, the latter of which results in the organization of MamK filaments into bundles. These data are consistent with observations indicating that accessory factors are required to promote filament disassembly and for spatial organization of filaments in vivo. We also used cryo-electron microscopy to obtain a high resolution structure of MamK filaments. MamK adopts a two-stranded helical filament architecture, but unlike eukaryotic actin and other actin-like filaments, subunits in MamK strands are unstaggered giving rise to a unique filament architecture. Beyond extending our knowledge of the properties and function of MamK in magnetotactic bacteria, this study emphasizes the functional and structural diversity of bacterial actins in general.


Journal of Molecular Evolution | 2000

Determining the Relative Rates of Change for Prokaryotic and Eukaryotic Proteins with Anciently Duplicated Paralogs

Justin M. Kollman; Russell F. Doolittle

Abstract. The relative rates of change for eight sets of ubiquitous proteins were determined by a test in which anciently duplicated paralogs are used to root the universal tree and distances are calculated between each taxonomic group and the last common ancestor. The sets included ATPase subunits, elongation factors, signal recognition particle and its receptor, three sets of tRNA synthetases, transcarbamoylases, and an internal duplication in carbamoyl phosphate synthase. In each case phylogenetic trees were constructed and the distances determined for all pairs. Taken over the period of time since their last common ancestor, average evolutionary rates are remarkably similar for Bacteria and Eukarya, but Archaea exhibit a significantly slower average rate.


Proteins | 2005

Natively Unfolded Regions of the Vertebrate Fibrinogen Molecule

Russell F. Doolittle; Justin M. Kollman

Although it has long been realized that a large portion of the fibrinogen α chain has little if any defined structure, the physiological significance of this flexible appendage remains mysterious. Proteins 2005.


Biochemistry | 2013

Bacterial actins and their diversity.

Ertan Ozyamak; Justin M. Kollman; Arash Komeili

For many years, bacteria were considered rather simple organisms, but the dogmatic notion that subcellular organization is a eukaryotic trait has been overthrown for more than a decade. The discovery of homologues of the eukaryotic cytoskeletal proteins actin, tubulin, and intermediate filaments in bacteria has been instrumental in changing this view. Over the past few years, we have gained an incredible level of insight into the diverse family of bacterial actins and their molecular workings. Here we review the functional, biochemical, and structural features of the most well-studied bacterial actins.

Collaboration


Dive into the Justin M. Kollman's collaboration.

Top Co-Authors

Avatar

David A. Agard

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex Zelter

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Anika Burrell

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge