Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Trisha N. Davis is active.

Publication


Featured researches published by Trisha N. Davis.


Nature | 2000

Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth.

Gefeng Zhu; Paul T. Spellman; Tom Volpe; Patrick O. Brown; David Botstein; Trisha N. Davis; Bruce Futcher

There are about 800 genes in Saccharomyces cerevisiae whose transcription is cell-cycle regulated. Some of these form clusters of co-regulated genes. The ‘CLB2’ cluster contains 33 genes whose transcription peaks early in mitosis, including CLB1, CLB2, SWI5, ACE2, CDC5, CDC20 and other genes important for mitosis. Here we find that the genes in this cluster lose their cell cycle regulation in a mutant that lacks two forkhead transcription factors, Fkh1 and Fkh2. Fkh2 protein is associated with the promoters of CLB2, SWI5 and other genes of the cluster. These results indicate that Fkh proteins are transcription factors for the CLB2 cluster. The fkh1 fkh2 mutant also displays aberrant regulation of the ‘SIC1’ cluster, whose member genes are expressed in the M–G1 interval and are involved in mitotic exit. This aberrant regulation may be due to aberrant expression of the transcription factors Swi5 and Ace2, which are members of the CLB2 cluster and controllers of the SIC1 cluster. Thus, a cascade of transcription factors operates late in the cell cycle. Finally, the fkh1 fkh2 mutant displays a constitutive pseudohyphal morphology, indicating that Fkh1 and Fkh2 may help control the switch to this mode of growth.


Cell | 1986

Isolation of the yeast calmodulin gene: Calmodulin is an essential protein

Trisha N. Davis; Mickey S. Urdea; Frank Masiarz; Jeremy Thorner

Calmodulin was purified from Saccharomyces cerevisiae based on its characteristic properties. Like other calmodulins, the yeast protein is small, heat-stable, acidic, retained by hydrophobic matrices in a Ca2+-dependent manner, exhibits a pronounced Ca2+-induced shift in electrophoretic mobility, and binds 45Ca2+. Using synthetic oligonucleotide probes designed from the sequences of two tryptic peptides derived from the purified protein, the gene encoding yeast calmodulin was isolated. The gene (designated CMD1) is a unique, single-copy locus, contains no introns, and resides on chromosome II. The amino acid sequence of yeast calmodulin shares 60% identity with other calmodulins. Disruption or deletion of the yeast calmodulin gene results in a recessive-lethal mutation; thus, calmodulin is essential for the growth of yeast cells.


Journal of Cell Biology | 2001

A protein interaction map for cell polarity development

Becky Drees; Bryan A. Sundin; Elizabeth Brazeau; Juliane P. Caviston; Guang Chao Chen; Wei Guo; Keith G. Kozminski; Michelle W. Lau; John J. Moskow; Amy Hin Yan Tong; Laura R. Schenkman; Amos Mckenzie; Patrick Brennwald; Mark S. Longtine; Erfei Bi; Clarence S.M. Chan; Peter Novick; Charles Boone; John R. Pringle; Trisha N. Davis; Stanley Fields; David G. Drubin

Many genes required for cell polarity development in budding yeast have been identified and arranged into a functional hierarchy. Core elements of the hierarchy are widely conserved, underlying cell polarity development in diverse eukaryotes. To enumerate more fully the protein–protein interactions that mediate cell polarity development, and to uncover novel mechanisms that coordinate the numerous events involved, we carried out a large-scale two-hybrid experiment. 68 Gal4 DNA binding domain fusions of yeast proteins associated with the actin cytoskeleton, septins, the secretory apparatus, and Rho-type GTPases were used to screen an array of yeast transformants that express ∼90% of the predicted Saccharomyces cerevisiae open reading frames as Gal4 activation domain fusions. 191 protein–protein interactions were detected, of which 128 had not been described previously. 44 interactions implicated 20 previously uncharacterized proteins in cell polarity development. Further insights into possible roles of 13 of these proteins were revealed by their multiple two-hybrid interactions and by subcellular localization. Included in the interaction network were associations of Cdc42 and Rho1 pathways with proteins involved in exocytosis, septin organization, actin assembly, microtubule organization, autophagy, cytokinesis, and cell wall synthesis. Other interactions suggested direct connections between Rho1- and Cdc42-regulated pathways; the secretory apparatus and regulators of polarity establishment; actin assembly and the morphogenesis checkpoint; and the exocytic and endocytic machinery. In total, a network of interactions that provide an integrated response of signaling proteins, the cytoskeleton, and organelles to the spatial cues that direct polarity development was revealed.


Cell | 1991

Can calmodulin function without binding calcium

John R. Geiser; Diederik van Tuinen; Susan E. Brockerhoff; Michael M. Neff; Trisha N. Davis

Calmodulin is a small Ca(2+)-binding protein proposed to act as the intracellular Ca2+ receptor that translates Ca2+ signals into cellular responses. We have constructed mutant yeast calmodulins in which the Ca(2+)-binding loops have been altered by site-directed mutagenesis. Each of the mutant proteins has a dramatically reduced affinity for Ca2+; one does not bind detectable levels of 45Ca2+ either during gel filtration or when bound to a solid support. Furthermore, none of the mutant proteins change conformation even in the presence of high Ca2+ concentrations. Surprisingly, yeast strains relying on any of the mutant calmodulins not only survive but grow well. In contrast, yeast strains deleted for the calmodulin gene are not viable. Thus, calmodulin is required for growth, but it can perform its essential function without the apparent ability to bind Ca2+.


Molecular Cell | 2003

Assigning Function to Yeast Proteins by Integration of Technologies

Tony R. Hazbun; Lars Malmström; Scott Anderson; Beth Graczyk; Bethany Fox; Michael Riffle; Bryan A. Sundin; J. Derringer Aranda; W. Hayes McDonald; Chun Hwei Chiu; Brian E. Snydsman; Phillip Bradley; Eric G D Muller; Stanley Fields; David Baker; John R. Yates; Trisha N. Davis

Interpreting genome sequences requires the functional analysis of thousands of predicted proteins, many of which are uncharacterized and without obvious homologs. To assess whether the roles of large sets of uncharacterized genes can be assigned by targeted application of a suite of technologies, we used four complementary protein-based methods to analyze a set of 100 uncharacterized but essential open reading frames (ORFs) of the yeast Saccharomyces cerevisiae. These proteins were subjected to affinity purification and mass spectrometry analysis to identify copurifying proteins, two-hybrid analysis to identify interacting proteins, fluorescence microscopy to localize the proteins, and structure prediction methodology to predict structural domains or identify remote homologies. Integration of the data assigned function to 48 ORFs using at least two of the Gene Ontology (GO) categories of biological process, molecular function, and cellular component; 77 ORFs were annotated by at least one method. This combination of technologies, coupled with annotation using GO, is a powerful approach to classifying genes.


Nature Cell Biology | 2012

Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress

Johnny M. Tkach; Askar Yimit; Anna Y. Lee; Michael Riffle; Michael Costanzo; Daniel Jaschob; Jason A. Hendry; Jiongwen Ou; Jason Moffat; Charles Boone; Trisha N. Davis; Corey Nislow; Grant W. Brown

Relocalization of proteins is a hallmark of the DNA damage response. We use high-throughput microscopic screening of the yeast GFP fusion collection to develop a systems-level view of protein reorganization following drug-induced DNA replication stress. Changes in protein localization and abundance reveal drug-specific patterns of functional enrichments. Classification of proteins by subcellular destination enables the identification of pathways that respond to replication stress. We analysed pairwise combinations of GFP fusions and gene deletion mutants to define and order two previously unknown DNA damage responses. In the first, Cmr1 forms subnuclear foci that are regulated by the histone deacetylase Hos2 and are distinct from the typical Rad52 repair foci. In a second example, we find that the checkpoint kinases Mec1/Tel1 and the translation regulator Asc1 regulate P-body formation. This method identifies response pathways that were not detected in genetic and protein interaction screens, and can be readily applied to any form of chemical or genetic stress to reveal cellular response pathways.


Cell | 2009

The Ndc80 Kinetochore Complex Forms Load-Bearing Attachments to Dynamic Microtubule Tips via Biased Diffusion

Andrew F. Powers; Andrew D. Franck; Daniel R. Gestaut; Jeremy Cooper; Beth Gracyzk; Ronnie R. Wei; Linda Wordeman; Trisha N. Davis; Charles L. Asbury

Kinetochores couple chromosomes to the assembling and disassembling tips of microtubules, a dynamic behavior that is fundamental to mitosis in all eukaryotes but poorly understood. Genetic, biochemical, and structural studies implicate the Ndc80 complex as a direct point of contact between kinetochores and microtubules, but these approaches provide only a static view. Here, using techniques for manipulating and tracking individual molecules in vitro, we demonstrate that the Ndc80 complex is capable of forming the dynamic, load-bearing attachments to assembling and disassembling tips required for coupling in vivo. We also establish that Ndc80-based coupling likely occurs through a biased diffusion mechanism and that this activity is conserved from yeast to humans. Our findings demonstrate how an ensemble of Ndc80 complexes may provide the combination of plasticity and strength that allows kinetochores to maintain load-bearing tip attachments during both microtubule assembly and disassembly.


Nature | 2010

Microtubule nucleating γTuSC assembles structures with 13-fold microtubule-like symmetry

Justin M. Kollman; Jessica K. Polka; Alex Zelter; Trisha N. Davis; David A. Agard

Microtubules are nucleated in vivo by γ-tubulin complexes. The 300-kDa γ-tubulin small complex (γ-TuSC), consisting of two molecules of γ-tubulin and one copy each of the accessory proteins Spc97 and Spc98, is the conserved, essential core of the microtubule nucleating machinery. In metazoa multiple γ-TuSCs assemble with other proteins into γ-tubulin ring complexes (γ-TuRCs). The structure of γ-TuRC indicated that it functions as a microtubule template. Because each γ-TuSC contains two molecules of γ-tubulin, it was assumed that the γ-TuRC-specific proteins are required to organize γ-TuSCs to match 13-fold microtubule symmetry. Here we show that Saccharomyces cerevisiae γ-TuSC forms rings even in the absence of other γ-TuRC components. The yeast adaptor protein Spc110 stabilizes the rings into extended filaments and is required for oligomer formation under physiological buffer conditions. The 8-Å cryo-electron microscopic reconstruction of the filament reveals 13 γ-tubulins per turn, matching microtubule symmetry, with plus ends exposed for interaction with microtubules, implying that one turn of the filament constitutes a microtubule template. The domain structures of Spc97 and Spc98 suggest functions for conserved sequence motifs, with implications for the γ-TuRC-specific proteins. The γ-TuSC filaments nucleate microtubules at a low level, and the structure provides a strong hypothesis for how nucleation is regulated, converting this less active form to a potent nucleator.


Journal of Cell Biology | 2010

Cooperation of the Dam1 and Ndc80 kinetochore complexes enhances microtubule coupling and is regulated by aurora B

Jerry F. Tien; Neil T. Umbreit; Daniel R. Gestaut; Andrew D. Franck; Jeremy Cooper; Linda Wordeman; Tamir Gonen; Charles L. Asbury; Trisha N. Davis

The Dam1 complex, regulated by aurora B phosphorylation, confers a more stable microtubule association for the Ndc80 complex at kinetochores (see also related paper by Lampert et al. in this issue).


Molecular and Cellular Biology | 1993

The essential mitotic target of calmodulin is the 110-kilodalton component of the spindle pole body in Saccharomyces cerevisiae.

John R. Geiser; Holly A. Sundberg; Bill H. Chang; Eric G D Muller; Trisha N. Davis

Two independent methods identified the spindle pole body component Nuf1p/Spc110p as the essential mitotic target of calmodulin. Extragenic suppressors of cmd1-1 were isolated and found to define three loci, XCM1, XCM2, and XCM3 (extragenic suppressor of cmd1-1). The gene encoding a dominant suppressor allele of XCM1 was cloned. On the basis of DNA sequence analysis, genetic cosegregation, and mutational analysis, XCM1 was identified as NUF1/SPC110. Independently, a C-terminal portion of Nuf1p/Spc110p, amino acid residues 828 to 944, was isolated as a calmodulin-binding protein by the two-hybrid system. As assayed by the two-hybrid system, Nuf1p/Spc110p interacts with wild-type calmodulin and triple-mutant calmodulins defective in binding Ca2+ but not with two mutant calmodulins that confer a temperature-sensitive phenotype. Deletion analysis by the two-hybrid system mapped the calmodulin-binding site of Nuf1p/Spc110p to amino acid residues 900 to 927. Direct binding between calmodulin and Nuf1p/Spc110p was demonstrated by a modified gel overlay assay. Furthermore, indirect immunofluorescence with fixation procedures known to aid visualization of spindle pole body components localized calmodulin to the spindle pole body. Sequence analysis of five suppressor alleles of NUF1/SPC110 indicated that suppression of cmd1-1 occurs by C-terminal truncation of Nuf1p/Spc110p at amino acid residues 856, 863, or 881, thereby removing the calmodulin-binding site.

Collaboration


Dive into the Trisha N. Davis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Riffle

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex Zelter

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beth Graczyk

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Jaschob

University of Washington

View shared research outputs
Top Co-Authors

Avatar

John R. Yates

Scripps Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge