Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Justin Rustenhoven is active.

Publication


Featured researches published by Justin Rustenhoven.


Journal of Neuroinflammation | 2014

A role for human brain pericytes in neuroinflammation

Deidre Jansson; Justin Rustenhoven; Sheryl Feng; Daniel G. Hurley; Robyn L. Oldfield; Peter S. Bergin; Edward W. Mee; Richard L.M. Faull; M. Dragunow

BackgroundBrain inflammation plays a key role in neurological disease. Although much research has been conducted investigating inflammatory events in animal models, potential differences in human brain versus rodent models makes it imperative that we also study these phenomena in human cells and tissue.MethodsPrimary human brain cell cultures were generated from biopsy tissue of patients undergoing surgery for drug-resistant epilepsy. Cells were treated with pro-inflammatory compounds IFNγ, TNFα, IL-1β, and LPS, and chemokines IP-10 and MCP-1 were measured by immunocytochemistry, western blot, and qRT-PCR. Microarray analysis was also performed on late passage cultures treated with vehicle or IFNγ and IL-1β.ResultsEarly passage human brain cell cultures were a mixture of microglia, astrocytes, fibroblasts and pericytes. Later passage cultures contained proliferating fibroblasts and pericytes only. Under basal culture conditions all cell types showed cytoplasmic NFκB indicating that they were in a non-activated state. Expression of IP-10 and MCP-1 were significantly increased in response to pro-inflammatory stimuli. The two chemokines were expressed in mixed cultures as well as cultures of fibroblasts and pericytes only. The expression of IP-10 and MCP-1 were regulated at the mRNA and protein level, and both were secreted into cell culture media. NFκB nuclear translocation was also detected in response to pro-inflammatory cues (except IFNγ) in all cell types. Microarray analysis of brain pericytes also revealed widespread changes in gene expression in response to the combination of IFNγ and IL-1β treatment including interleukins, chemokines, cellular adhesion molecules and much more.ConclusionsAdult human brain cells are sensitive to cytokine challenge. As expected ‘classical’ brain immune cells, such as microglia and astrocytes, responded to cytokine challenge but of even more interest, brain pericytes also responded to such challenge with a rich repertoire of gene expression. Immune activation of brain pericytes may play an important role in communicating inflammatory signals to and within the brain interior and may also be involved in blood brain barrier (BBB) disruption . Targeting brain pericytes, as well as microglia and astrocytes, may provide novel opportunities for reducing brain inflammation and maintaining BBB function and brain homeostasis in human brain disease.


Trends in Pharmacological Sciences | 2017

Brain Pericytes As Mediators of Neuroinflammation

Justin Rustenhoven; Deidre Jansson; Leon Smyth; M. Dragunow

Brain pericytes are perivascular cells that regulate capillary function, and this localization puts them in a pivotal position for the regulation of central nervous system (CNS) inflammatory responses at the neurovascular unit. Neuroinflammation, driven by microglia and astrocytes or resulting from peripheral leukocyte infiltration, has both homeostatic and detrimental consequences for brain function and is present in nearly every neurological disorder. More recently, brain pericytes have been shown to have many properties of immune regulating cells, including responding to and expressing a plethora of inflammatory molecules, presenting antigen, and displaying phagocytic ability. In this review we highlight the emerging role of pericytes in neuroinflammation and discuss pericyte-mediated neuroinflammation as a potential therapeutic target for the treatment of a range of devastating brain disorders.


Journal of Neuroinflammation | 2016

TGF-beta1 regulates human brain pericyte inflammatory processes involved in neurovasculature function

Justin Rustenhoven; Miranda Aalderink; Emma L. Scotter; Robyn L. Oldfield; Peter S. Bergin; Edward W. Mee; E. Scott Graham; Richard L.M. Faull; Maurice A. Curtis; Thomas I.H. Park; M. Dragunow

BackgroundTransforming growth factor beta 1 (TGFβ1) is strongly induced following brain injury and polarises microglia to an anti-inflammatory phenotype. Augmentation of TGFβ1 responses may therefore be beneficial in preventing inflammation in neurological disorders including stroke and neurodegenerative diseases. However, several other cell types display immunogenic potential and identifying the effect of TGFβ1 on these cells is required to more fully understand its effects on brain inflammation. Pericytes are multifunctional cells which ensheath the brain vasculature and have garnered recent attention with respect to their immunomodulatory potential. Here, we sought to investigate the inflammatory phenotype adopted by TGFβ1-stimulated human brain pericytes.MethodsMicroarray analysis was performed to examine transcriptome-wide changes in TGFβ1-stimulated pericytes, and results were validated by qRT-PCR and cytometric bead arrays. Flow cytometry, immunocytochemistry and LDH/Alamar Blue® viability assays were utilised to examine phagocytic capacity of human brain pericytes, transcription factor modulation and pericyte health.ResultsTGFβ1 treatment of primary human brain pericytes induced the expression of several inflammatory-related genes (NOX4, COX2, IL6 and MMP2) and attenuated others (IL8, CX3CL1, MCP1 and VCAM1). A synergistic induction of IL-6 was seen with IL-1β/TGFβ1 treatment whilst TGFβ1 attenuated the IL-1β-induced expression of CX3CL1, MCP-1 and sVCAM-1. TGFβ1 was found to signal through SMAD2/3 transcription factors but did not modify nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) translocation. Furthermore, TGFβ1 attenuated the phagocytic ability of pericytes, possibly through downregulation of the scavenger receptors CD36, CD47 and CD68. Whilst TGFβ did decrease pericyte number, this was due to a reduction in proliferation, not apoptotic death or compromised cell viability.ConclusionsTGFβ1 attenuated pericyte expression of key chemokines and adhesion molecules involved in CNS leukocyte trafficking and the modulation of microglial function, as well as reduced the phagocytic ability of pericytes. However, TGFβ1 also enhanced the expression of classical pro-inflammatory cytokines and enzymes which can disrupt BBB functioning, suggesting that pericytes adopt a phenotype which is neither solely pro- nor anti-inflammatory. Whilst the effects of pericyte modulation by TGFβ1 in vivo are difficult to infer, the reduction in pericyte proliferation together with the elevated IL-6, MMP-2 and NOX4 and reduced phagocytosis suggests a detrimental action of TGFβ1 on neurovasculature.


Scientific Reports | 2016

Isolation of highly enriched primary human microglia for functional studies.

Justin Rustenhoven; Thomas I.H. Park; Patrick Schweder; John Scotter; Jason Correia; Amy M. Smith; Hannah M. Gibbons; Robyn L. Oldfield; Peter S. Bergin; Edward W. Mee; Richard L. M. Faull; Maurice A. Curtis; E. Scott Graham; M. Dragunow

Microglia, the resident macrophages of the central nervous system play vital roles in brain homeostasis through clearance of pathogenic material. Microglia are also implicated in neurological disorders through uncontrolled activation and inflammatory responses. To date, the vast majority of microglial studies have been performed using rodent models. Human microglia differ from rodent counterparts in several aspects including their response to pharmacological substances and their inflammatory secretions. Such differences highlight the need for studies on primary adult human brain microglia and methods to isolate them are therefore required. Our procedure generates microglial cultures of >95% purity from both biopsy and autopsy human brain tissue using a very simple media-based culture procedure that takes advantage of the adherent properties of these cells. Microglia obtained in this manner can be utilised for research within a week. Isolated microglia demonstrate phagocytic ability and respond to inflammatory stimuli and their purity makes them suitable for numerous other forms of in vitro studies, including secretome and transcriptome analysis. Furthermore, this protocol allows for the simultaneous isolation of neural precursor cells during the microglial isolation procedure. As human brain tissue is such a precious and valuable resource the simultaneous isolation of multiple cell types is highly beneficial.


Scientific Reports | 2015

An anti-inflammatory role for C/EBPδ in human brain pericytes

Justin Rustenhoven; Emma L. Scotter; Deidre Jansson; Dan T. Kho; Robyn L. Oldfield; Peter S. Bergin; Edward W. Mee; Richard L.M. Faull; Maurice A. Curtis; Scott E. Graham; Thomas I.H. Park; M. Dragunow

Neuroinflammation contributes to the pathogenesis of several neurological disorders and pericytes are implicated in brain inflammatory processes. Cellular inflammatory responses are orchestrated by transcription factors but information on transcriptional control in pericytes is lacking. Because the transcription factor CCAAT/enhancer binding protein delta (C/EBPδ) is induced in a number of inflammatory brain disorders, we sought to investigate its role in regulating pericyte immune responses. Our results reveal that C/EBPδ is induced in a concentration- and time-dependent fashion in human brain pericytes by interleukin-1β (IL-1β). To investigate the function of the induced C/EBPδ in pericytes we used siRNA to knockdown IL-1β-induced C/EBPδ expression. C/EBPδ knockdown enhanced IL-1β-induced production of intracellular adhesion molecule-1 (ICAM-1), interleukin-8, monocyte chemoattractant protein-1 (MCP-1) and IL-1β, whilst attenuating cyclooxygenase-2 and superoxide dismutase-2 gene expression. Altered ICAM-1 and MCP-1 protein expression were confirmed by cytometric bead array and immunocytochemistry. Our results show that knock-down of C/EBPδ expression in pericytes following immune stimulation increased chemokine and adhesion molecule expression, thus modifying the human brain pericyte inflammatory response. The induction of C/EBPδ following immune stimulation may act to limit infiltration of peripheral immune cells, thereby preventing further inflammatory responses in the brain.


Scientific Reports | 2016

Cultured pericytes from human brain show phenotypic and functional differences associated with differential CD90 expression

Thomas I.H. Park; Vaughan Feisst; Anna E. S. Brooks; Justin Rustenhoven; Hector J. Monzo; Sheryl Feng; Edward W. Mee; Peter S. Bergin; Robyn L. Oldfield; E. Scott Graham; Maurice A. Curtis; Richard L. M. Faull; P. Rod Dunbar; M. Dragunow

The human brain is a highly vascular organ in which the blood-brain barrier (BBB) tightly regulates molecules entering the brain. Pericytes are an integral cell type of the BBB, regulating vascular integrity, neuroinflammation, angiogenesis and wound repair. Despite their importance, identifying pericytes amongst other perivascular cell types and deciphering their specific role in the neurovasculature remains a challenge. Using primary adult human brain cultures and fluorescent-activated cell sorting, we identified two CD73+CD45− mesenchymal populations that showed either high or low CD90 expression. CD90 is known to be present on neurons in the brain and peripheral blood vessels. We found in the human brain, that CD90 immunostaining localised to the neurovasculature and often associated with pericytes. In vitro, CD90+ cells exhibited higher basal proliferation, lower expression of markers αSMA and CD140b, produced less extracellular matrix (ECM) proteins, and exhibited lesser pro-inflammatory responses when compared to the CD90− population. Thus, CD90 distinguishes two interrelated, yet functionally distinct pericyte populations in the adult human brain that may have discrete roles in neurovascular function, immune response and scar formation.


BMC Neuroscience | 2018

Modelling physiological and pathological conditions to study pericyte biology in brain function and dysfunction

Justin Rustenhoven; Leon Smyth; Deidre Jansson; Patrick Schweder; Miranda Aalderink; Emma L. Scotter; Edward W. Mee; Richard L.M. Faull; Thomas I.H. Park; M. Dragunow

BackgroundBrain pericytes ensheathe the endothelium and contribute to formation and maintenance of the blood–brain-barrier. Additionally, pericytes are involved in several aspects of the CNS immune response including scarring, adhesion molecule expression, chemokine secretion, and phagocytosis. In vitro cultures are routinely used to investigate these functions of brain pericytes, however, these are highly plastic cells and can display differing phenotypes and functional responses depending on their culture conditions. Here we sought to investigate how two commonly used culture media, high serum containing DMEM/F12 and low serum containing Pericyte Medium (ScienCell), altered the phenotype of human brain pericytes and neuroinflammatory responses.MethodsPericytes were isolated from adult human brain biopsy tissue and cultured in DMEM/F12 (D-pericytes) or Pericyte Medium (P-pericytes). Immunocytochemistry, qRT-PCR, and EdU incorporation were used to determine how this altered their basal phenotype, including the expression of pericyte markers, proliferation, and cell morphology. To determine whether culture media altered the inflammatory response in human brain pericytes, immunocytochemistry, qRT-PCR, cytometric bead arrays, and flow cytometry were used to investigate transcription factor induction, chemokine secretion, adhesion molecule expression, migration, phagocytosis, and response to inflammatory-related growth factors.ResultsP-pericytes displayed elevated proliferation and a distinct bipolar morphology compared to D-pericytes. Additionally, P-pericytes displayed lower expression of pericyte-associated markers NG2, PDGFRβ, and fibronectin, with notably lower αSMA, CD146, P4H and desmin, and higher Col-IV expression. Nuclear NF-kB translocation in response to IL-1β stimulation was observed in both cultures, however, P-pericytes displayed elevated expression of the transcription factor C/EBPδ, and lower expression of the adhesion molecule ICAM-1. P-pericytes displayed elevated phagocytic and migratory ability. Both cultures responded similarly to stimulation by the growth factors TGFβ1 and PDGF-BB.ConclusionsDespite differences in their phenotype and magnitude of response, both P-pericytes and D-pericytes responded similarly to all examined functions, indicating that the neuroinflammatory phenotype of these cells is robust to culture conditions.


Neurochemical Research | 2016

Studying Human Brain Inflammation in Leptomeningeal and Choroid Plexus Explant Cultures

M. Dragunow; Sheryl Feng; Justin Rustenhoven; Maurice A. Curtis; Richard L.M. Faull

The meninges (dura, pia and arachnoid) are critical membranes encasing and protecting the brain within the skull. The leptomeninges, which comprise the arachnoid and pia, have many functions beyond brain protection including roles in neurogenesis, fibrotic scar formation and brain inflammation. Similarly, the choroid plexus plays important roles in normal brain function but is also involved in brain inflammation. We have begun studying the role of human leptomeninges and choroid plexus in brain inflammation and leptomeninges in fibrotic scar formation, using human brain derived explant cultures. To study the composition of the cells generated in these explants we undertook immunocytochemical characterisation. Cells, mainly pericytes and meningeal macrophages, emerge from leptomeningeal explants (LME’s) and respond to inflammatory mediators by producing inflammatory molecules. LME-derived cells also respond to mechanical injury and cytokines, providing an in vitro human brain model of fibrotic scar formation. Choroid plexus explants (CPE’s) generate epithelial cells, pericytes and microglia/macrophages. CPE-derived cells also respond to inflammatory mediators. LME and CPE explants survive and generate cells for many months in vitro and provide a remarkable opportunity to study basic mechanisms of human brain inflammation and fibrosis and to test human-active anti-inflammatory and anti-scarring treatments.


Molecular Neurodegeneration | 2018

PU.1 regulates Alzheimer’s disease-associated genes in primary human microglia

Justin Rustenhoven; Amy M. Smith; Leon Smyth; Deidre Jansson; Emma L. Scotter; Molly E. V. Swanson; Miranda Aalderink; Natacha Coppieters; Pritika Narayan; Renee R. Handley; Chris Overall; Thomas I.H. Park; Patrick Schweder; Peter A. Heppner; Maurice A. Curtis; Richard L. M. Faull; M. Dragunow

BackgroundMicroglia play critical roles in the brain during homeostasis and pathological conditions. Understanding the molecular events underpinning microglial functions and activation states will further enable us to target these cells for the treatment of neurological disorders. The transcription factor PU.1 is critical in the development of myeloid cells and a major regulator of microglial gene expression. In the brain, PU.1 is specifically expressed in microglia and recent evidence from genome-wide association studies suggests that reductions in PU.1 contribute to a delayed onset of Alzheimer’s disease (AD), possibly through limiting neuroinflammatory responses.MethodsTo investigate how PU.1 contributes to immune activation in human microglia, microarray analysis was performed on primary human mixed glial cultures subjected to siRNA-mediated knockdown of PU.1. Microarray hits were confirmed by qRT-PCR and immunocytochemistry in both mixed glial cultures and isolated microglia following PU.1 knockdown. To identify attenuators of PU.1 expression in microglia, high throughput drug screening was undertaken using a compound library containing FDA-approved drugs. NanoString and immunohistochemistry was utilised to investigate the expression of PU.1 itself and PU.1-regulated mediators in primary human brain tissue derived from neurologically normal and clinically and pathologically confirmed cases of AD.ResultsBioinformatic analysis of gene expression upon PU.1 silencing in mixed glial cultures revealed a network of modified AD-associated microglial genes involved in the innate and adaptive immune systems, particularly those involved in antigen presentation and phagocytosis. These gene changes were confirmed using isolated microglial cultures. Utilising high throughput screening of FDA-approved compounds in mixed glial cultures we identified the histone deacetylase inhibitor vorinostat as an effective attenuator of PU.1 expression in human microglia. Further characterisation of vorinostat in isolated microglial cultures revealed gene and protein changes partially recapitulating those seen following siRNA-mediated PU.1 knockdown. Lastly, we demonstrate that several of these PU.1-regulated genes are expressed by microglia in the human AD brain in situ.ConclusionsCollectively, these results suggest that attenuating PU.1 may be a valid therapeutic approach to limit microglial-mediated inflammatory responses in AD and demonstrate utility of vorinostat for this purpose.


Journal of Neuroinflammation | 2018

Unique and shared inflammatory profiles of human brain endothelia and pericytes

Leon Smyth; Justin Rustenhoven; Thomas I.H. Park; Patrick Schweder; Deidre Jansson; Peter A. Heppner; Simon J. O’Carroll; Edward W. Mee; Richard L. M. Faull; Maurice A. Curtis; M. Dragunow

BackgroundPericytes and endothelial cells are critical cellular components of the blood-brain barrier (BBB) and play an important role in neuroinflammation. To date, the majority of inflammation-related studies in endothelia and pericytes have been carried out using immortalised cell lines or non-human-derived cells. Whether these are representative of primary human cells is unclear and systematic comparisons of the inflammatory responses of primary human brain-derived pericytes and endothelia has yet to be performed.MethodsTo study the effects of neuroinflammation at the BBB, primary brain endothelial cells and pericytes were isolated from human biopsy tissue. Culture purity was examined using qPCR and immunocytochemistry. Electrical cell-substrate impedance sensing (ECIS) was used to determine the barrier properties of endothelial and pericyte cultures. Using immunocytochemistry, cytometric bead array, and ECIS, we compared the responses of endothelia and pericytes to a panel of inflammatory stimuli (IL-1β, TNFα, LPS, IFN-γ, TGF-β1, IL-6, and IL-4). Secretome analysis was performed to identify unique secretions of endothelia and pericytes in response to IL-1β.ResultsEndothelial cells were pure, moderately proliferative, retained the expression of BBB-related junctional proteins and transporters, and generated robust TEER. Both endothelia and pericytes have the same pattern of transcription factor activation in response to inflammatory stimuli but respond differently at the secretion level. Secretome analysis confirmed that endothelia and pericytes have overlapping but distinct secretome profiles in response to IL-1β. We identified several cell-type specific responses, including G-CSF and GM-CSF (endothelial-specific), and IGFBP2 and IGFBP3 (pericyte-specific). Finally, we demonstrated that direct addition of IL-1β, TNFα, LPS, and IL-4 contributed to the loss of endothelial barrier integrity in vitro.ConclusionsHere, we identify important cell-type differences in the inflammatory response of brain pericytes and endothelia and provide, for the first time, a comprehensive profile of the secretions of primary human brain endothelia and pericytes which has implications for understanding how inflammation affects the cerebrovasculature.

Collaboration


Dive into the Justin Rustenhoven's collaboration.

Top Co-Authors

Avatar

M. Dragunow

University of Auckland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leon Smyth

University of Auckland

View shared research outputs
Researchain Logo
Decentralizing Knowledge