Justin Wray
University of Florida
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Justin Wray.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Sheema Fnu; Elizabeth A. Williamson; Leyma P. De Haro; Mark A. Brenneman; Justin Wray; Montaser Shaheen; Krishnan Radhakrishnan; Suk Hee Lee; Jac A. Nickoloff; Robert Hromas
Given its significant role in the maintenance of genomic stability, histone methylation has been postulated to regulate DNA repair. Histone methylation mediates localization of 53BP1 to a DNA double-strand break (DSB) during homologous recombination repair, but a role in DSB repair by nonhomologous end-joining (NHEJ) has not been defined. By screening for histone methylation after DSB induction by ionizing radiation we found that generation of dimethyl histone H3 lysine 36 (H3K36me2) was the major event. Using a novel human cell system that rapidly generates a single defined DSB in the vast majority of cells, we found that the DNA repair protein Metnase (also SETMAR), which has a SET histone methylase domain, localized to an induced DSB and directly mediated the formation of H3K36me2 near the induced DSB. This dimethylation of H3K36 improved the association of early DNA repair components, including NBS1 and Ku70, with the induced DSB, and enhanced DSB repair. In addition, expression of JHDM1a (an H3K36me2 demethylase) or histone H3 in which K36 was mutated to A36 or R36 to prevent H3K36me2 formation decreased the association of early NHEJ repair components with an induced DSB and decreased DSB repair. Thus, these experiments define a histone methylation event that enhances DNA DSB repair by NHEJ.
Molecular and Cellular Biology | 2005
Huimei Lu; Xu Guo; Xiangbing Meng; Jingmei Liu; Chris Allen; Justin Wray; Jac A. Nickoloff; Zhiyuan Shen
ABSTRACT Homologous recombinational repair (HRR) of DNA damage is critical for maintaining genome stability and tumor suppression. RAD51 and BRCA2 colocalization in nuclear foci is a hallmark of HRR. BRCA2 has important roles in RAD51 focus formation and HRR of DNA double-strand breaks (DSBs). We previously reported that BCCIPα interacts with BRCA2. We show that a second isoform, BCCIPβ, also interacts with BRCA2 and that this interaction occurs in a region shared by BCCIPα and BCCIPβ. We further show that chromatin-bound BRCA2 colocalizes with BCCIP nuclear foci and that most radiation-induced RAD51 foci colocalize with BCCIP. Reducing BCCIPα by 90% or BCCIPβ by 50% by RNA interference markedly reduces RAD51 and BRCA2 foci and reduces HRR of DSBs by 20- to 100-fold. Similarly, reducing BRCA2 by 50% reduces RAD51 and BCCIP foci. These data indicate that BCCIP is critical for BRCA2- and RAD51-dependent responses to DNA damage and HRR.
Blood | 2013
Justin Wray; Elizabeth A. Williamson; Sudha B. Singh; Yuehan Wu; Christopher R. Cogle; David M. Weinstock; Yu Zhang; Suk-Hee Lee; Daohong Zhou; Lijian Shao; Martin Hauer-Jensen; Rupak Pathak; Virginia M. Klimek; Jac A. Nickoloff; Robert Hromas
Chromosomal translocations are common contributors to malignancy, yet little is known about the precise molecular mechanisms by which they are generated. Sequencing translocation junctions in acute leukemias revealed that the translocations were likely mediated by a DNA double-strand break repair pathway termed nonhomologous end-joining (NHEJ). There are major 2 types of NHEJ: (1) the classical pathway initiated by the Ku complex, and (2) the alternative pathway initiated by poly ADP-ribose polymerase 1 (PARP1). Recent reports suggest that classical NHEJ repair components repress translocations, whereas alternative NHEJ components were required for translocations. The rate-limiting step for initiation of alternative NHEJ is the displacement of the Ku complex by PARP1. Therefore, we asked whether PARP1 inhibition could prevent chromosomal translocations in 3 translocation reporter systems. We found that 2 PARP1 inhibitors or repression of PARP1 protein expression strongly repressed chromosomal translocations, implying that PARP1 is essential for this process. Finally, PARP1 inhibition also reduced both ionizing radiation-generated and VP16-generated translocations in 2 cell lines. These data define PARP1 as a critical mediator of chromosomal translocations and raise the possibility that oncogenic translocations occurring after high-dose chemotherapy or radiation could be prevented by treatment with a clinically available PARP1 inhibitor.
Blood | 2009
Justin Wray; Elizabeth A. Williamson; Sheema Sheema; Suk Hee Lee; Edward N. Libby; Cheryl L. Willman; Jac A. Nickoloff; Robert Hromas
After DNA replication, sister chromatids must be untangled, or decatenated, before mitosis so that chromatids do not tear during anaphase. Topoisomerase IIalpha (Topo IIalpha) is the major decatenating enzyme. Topo IIalpha inhibitors prevent decatenation, causing cells to arrest during mitosis. Here we report that acute myeloid leukemia cells fail to arrest at the mitotic decatenation checkpoint, and their progression through this checkpoint is regulated by the DNA repair component Metnase (also termed SETMAR). Metnase contains a SET histone methylase and transposase nuclease domain, and is a component of the nonhomologous end-joining DNA double-strand break repair pathway. Metnase interacts with Topo IIalpha and enhances its decatenation activity. Here we show that multiple types of acute leukemia cells have an attenuated mitotic arrest when decatenation is inhibited and that in an acute myeloid leukemia (AML) cell line this is mediated by Metnase. Of further importance, Metnase permits continued proliferation of these AML cells even in the presence of the clinical Topo IIalpha inhibitor VP-16. In vitro, purified Metnase prevents VP-16 inhibition of Topo IIalpha decatenation of tangled DNA. Thus, Metnase expression levels may predict AML resistance to Topo IIalpha inhibitors, and Metnase is a potential therapeutic target for small molecule interference.
Nucleic Acids Research | 2008
Elizabeth A. Williamson; Kanwaldeep Kaur Rasila; Lori Kwan Corwin; Justin Wray; Brian D. Beck; Virginia Severns; Charlotte Mobarak; Suk Hee Lee; Jac A. Nickoloff; Robert Hromas
Metnase is a human SET and transposase domain protein that methylates histone H3 and promotes DNA double-strand break repair. We now show that Metnase physically interacts and co-localizes with Topoisomerase IIα (Topo IIα), the key chromosome decatenating enzyme. Metnase promotes progression through decatenation and increases resistance to the Topo IIα inhibitors ICRF-193 and VP-16. Purified Metnase greatly enhanced Topo IIα decatenation of kinetoplast DNA to relaxed circular forms. Nuclear extracts containing Metnase decatenated kDNA more rapidly than those without Metnase, and neutralizing anti-sera against Metnase reversed that enhancement of decatenation. Metnase automethylates at K485, and the presence of a methyl donor blocked the enhancement of Topo IIα decatenation by Metnase, implying an internal regulatory inhibition. Thus, Metnase enhances Topo IIα decatenation, and this activity is repressed by automethylation. These results suggest that cancer cells could subvert Metnase to mediate clinically relevant resistance to Topo IIα inhibitors.
Nucleic Acids Research | 2010
Leyma P. De Haro; Justin Wray; Elizabeth A. Williamson; Stephen T. Durant; Lori Kwan Corwin; Amanda C. Gentry; Neil Osheroff; Suk Hee Lee; Robert Hromas; Jac A. Nickoloff
Metnase is a human protein with methylase (SET) and nuclease domains that is widely expressed, especially in proliferating tissues. Metnase promotes non-homologous end-joining (NHEJ), and knockdown causes mild hypersensitivity to ionizing radiation. Metnase also promotes plasmid and viral DNA integration, and topoisomerase IIα (TopoIIα)-dependent chromosome decatenation. NHEJ factors have been implicated in the replication stress response, and TopoIIα has been proposed to relax positive supercoils in front of replication forks. Here we show that Metnase promotes cell proliferation, but it does not alter cell cycle distributions, or replication fork progression. However, Metnase knockdown sensitizes cells to replication stress and confers a marked defect in restart of stalled replication forks. Metnase promotes resolution of phosphorylated histone H2AX, a marker of DNA double-strand breaks at collapsed forks, and it co-immunoprecipitates with PCNA and RAD9, a member of the PCNA-like RAD9–HUS1–RAD1 intra-S checkpoint complex. Metnase also promotes TopoIIα-mediated relaxation of positively supercoiled DNA. Metnase is not required for RAD51 focus formation after replication stress, but Metnase knockdown cells show increased RAD51 foci in the presence or absence of replication stress. These results establish Metnase as a key factor that promotes restart of stalled replication forks, and implicate Metnase in the repair of collapsed forks.
DNA Repair | 2008
Robert Hromas; Justin Wray; Suk Hee Lee; Leah Martinez; Jacqueline Farrington; Lori Kwan Corwin; Heather Ramsey; Jac A. Nickoloff; Elizabeth A. Williamson
Transposase domain proteins mediate DNA movement from one location in the genome to another in lower organisms. However, in human cells such DNA mobility would be deleterious, and therefore the vast majority of transposase-related sequences in humans are pseudogenes. We recently isolated and characterized a SET and transposase domain protein termed Metnase that promotes DNA double-strand break (DSB) repair by non-homologous end-joining (NHEJ). Both the SET and transposase domain were required for its NHEJ activity. In this study we found that Metnase interacts with DNA Ligase IV, an important component of the classical NHEJ pathway. We investigated whether Metnase had structural requirements of the free DNA ends for NHEJ repair, and found that Metnase assists in joining all types of free DNA ends equally well. Metnase also prevents long deletions from processing of the free DNA ends, and improves the accuracy of NHEJ. Metnase levels correlate with the speed of disappearance of gamma-H2Ax sites after ionizing radiation. However, Metnase has little effect on homologous recombination repair of a single DSB. Altogether, these results fit a model where Metnase plays a role in the fate of free DNA ends during NHEJ repair of DSBs.
Current Opinion in Hematology | 2008
Jac A. Nickoloff; Leyma P. De Haro; Justin Wray; Robert Hromas
Purpose of reviewThis review highlights recent findings about the known DNA repair machinery, its impact on chromosomal translocation mechanisms and their relevance to leukemia in the clinic. Recent findingsChromosomal translocations regulate the behavior of leukemia. They not only predict outcome but they define therapy. There is a great deal of knowledge on the products of leukemic translocations, yet little is known about the mechanism by which those translocations occur. Given the large number of DNA double-strand breaks that occur during normal progression through the cell cycle, especially from V(D)J recombination, stalled replication forks or failed decatenation, it is surprising that leukemogenic translocations do not occur more frequently. Fortunately, hematopoietic cells have sophisticated repair mechanisms to suppress such translocations. When these defenses fail leukemia becomes far more common, as seen in inherited deficiencies of DNA repair. Analyzing translocation sequences in cellular and animal models, and in human leukemias, has yielded new insights into the mechanisms of leukemogenic translocations. SummaryNew data from animal models suggest a two hit origin of leukemic translocations, where there must be both a defect in DNA double-strand break repair and a subsequent failure of cell cycle arrest for leukemogenesis.
PLOS ONE | 2009
Justin Wray; Elizabeth A. Williamson; Melanie Royce; Montaser Shaheen; Brian D. Beck; Suk Hee Lee; Jac A. Nickoloff; Robert Hromas
DNA replication produces tangled, or catenated, chromatids, that must be decatenated prior to mitosis or catastrophic genomic damage will occur. Topoisomerase IIα (Topo IIα) is the primary decatenating enzyme. Cells monitor catenation status and activate decatenation checkpoints when decatenation is incomplete, which occurs when Topo IIα is inhibited by chemotherapy agents such as the anthracyclines and epididophyllotoxins. We recently demonstrated that the DNA repair component Metnase (also called SETMAR) enhances Topo IIα-mediated decatenation, and hypothesized that Metnase could mediate resistance to Topo IIα inhibitors. Here we show that Metnase interacts with Topo IIα in breast cancer cells, and that reducing Metnase expression significantly increases metaphase decatenation checkpoint arrest. Repression of Metnase sensitizes breast cancer cells to Topo IIα inhibitors, and directly blocks the inhibitory effect of the anthracycline adriamycin on Topo IIα-mediated decatenation in vitro. Thus, Metnase may mediate resistance to Topo IIα inhibitors, and could be a biomarker for clinical sensitivity to anthracyclines. Metnase could also become an important target for combination chemotherapy with current Topo IIα inhibitors, specifically in anthracycline-resistant breast cancer.
Molecular and Cellular Biology | 2009
Jennifer Rhodes; Adam Amsterdam; Takaomi Sanda; Lisa A. Moreau; Keith McKenna; Stefan Heinrichs; Neil J. Ganem; Karen W. Ho; Donna Neuberg; Johnston Ab; Yebin Ahn; Jeffery L. Kutok; Robert Hromas; Justin Wray; Charles Lee; Carly Murphy; Ina Radtke; James R. Downing; Mark D. Fleming; Laura E. MacConaill; James F. Amatruda; Alejandro Gutierrez; Ilene Galinsky; Richard Stone; Eric A. Ross; David Pellman; John P. Kanki; A. Thomas Look
ABSTRACT A growing body of evidence indicates that early mitotic inhibitor 1 (Emi1) is essential for genomic stability, but how this function relates to embryonic development and cancer pathogenesis remains unclear. We have identified a zebrafish mutant line in which deficient emi1 gene expression results in multilineage hematopoietic defects and widespread developmental defects that are p53 independent. Cell cycle analyses of Emi1-depleted zebrafish or human cells showed chromosomal rereplication, and metaphase preparations from mutant zebrafish embryos revealed rereplicated, unsegregated chromosomes and polyploidy. Furthermore, EMI1-depleted mammalian cells relied on topoisomerase IIα-dependent mitotic decatenation to progress through metaphase. Interestingly, the loss of a single emi1 allele in the absence of p53 enhanced the susceptibility of adult fish to neural sheath tumorigenesis. Our results cast Emi1 as a critical regulator of genomic fidelity during embryogenesis and suggest that the factor may act as a tumor suppressor.