Justyna Filant
University of Texas MD Anderson Cancer Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Justyna Filant.
Nature Communications | 2014
Rajesha Rupaimoole; Sherry Y. Wu; Sunila Pradeep; Cristina Ivan; Chad V. Pecot; Kshipra M. Gharpure; Archana S. Nagaraja; Guillermo N. Armaiz-Pena; Michael McGuire; Behrouz Zand; Heather J. Dalton; Justyna Filant; Justin Bottsford Miller; Chunhua Lu; Nouara C. Sadaoui; Lingegowda S. Mangala; Morgan Taylor; Twan van den Beucken; Elizabeth Koch; Cristian Rodriguez-Aguayo; Li Huang; Menashe Bar-Eli; Bradly G. Wouters; Milan Radovich; Mircea Ivan; George A. Calin; Wei Zhang; Gabriel Lopez-Berestein; Anil K. Sood
Cancer-related deregulation of miRNA biogenesis has been suggested, but the underlying mechanisms remain elusive. Here we report a previously unrecognized effect of hypoxia in the downregulation of Drosha and Dicer in cancer cells that leads to dysregulation of miRNA biogenesis and increased tumour progression. We show that hypoxia-mediated downregulation of Drosha is dependent on ETS1/ELK1 transcription factors. Moreover, mature miRNA array and deep sequencing studies reveal altered miRNA maturation in cells under hypoxic conditions. At a functional level, this phenomenon results in increased cancer progression in vitro and in vivo, and data from patient samples are suggestive of miRNA biogenesis downregulation in hypoxic tumours. Rescue of Drosha by siRNAs targeting ETS1/ELK1 in vivo results in significant tumour regression. These findings provide a new link in the mechanistic understanding of global miRNA downregulation in the tumour microenvironment. MicroRNAs play important roles in the maintenance of cellular homeostasis through the post-transcriptional regulation of gene expression. Here, the authors implicate loss of the miRNA biogenesis factor Drosha and altered miRNA maturation in tumour progression under hypoxic conditions.
Nature Communications | 2016
Sherry Y. Wu; Rajesha Rupaimoole; Fangrong Shen; Sunila Pradeep; Chad V. Pecot; Cristina Ivan; Archana S. Nagaraja; Kshipra M. Gharpure; Elizabeth Pham; Hiroto Hatakeyama; Michael McGuire; Monika Haemmerle; Viviana Vidal-Anaya; Courtney Olsen; Cristian Rodriguez-Aguayo; Justyna Filant; Ehsan A. Ehsanipour; Shelley M. Herbrich; Sourindra Maiti; Li Huang; Ji Hoon Kim; Xinna Zhang; Hee Dong Han; Guillermo N. Armaiz-Pena; Elena G. Seviour; Susan L. Tucker; Min Zhang; Da Yang; Laurence J.N. Cooper; Rouba Ali-Fehmi
A deeper mechanistic understanding of tumour angiogenesis regulation is needed to improve current anti-angiogenic therapies. Here we present evidence from systems-based miRNA analyses of large-scale patient data sets along with in vitro and in vivo experiments that miR-192 is a key regulator of angiogenesis. The potent anti-angiogenic effect of miR-192 stems from its ability to globally downregulate angiogenic pathways in cancer cells through regulation of EGR1 and HOXB9. Low miR-192 expression in human tumours is predictive of poor clinical outcome in several cancer types. Using 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) nanoliposomes, we show that miR-192 delivery leads to inhibition of tumour angiogenesis in multiple ovarian and renal tumour models, resulting in tumour regression and growth inhibition. This anti-angiogenic and anti-tumour effect is more robust than that observed with an anti-VEGF antibody. Collectively, these data identify miR-192 as a central node in tumour angiogenesis and support the use of miR-192 in an anti-angiogenesis therapy.
Current Gene Therapy | 2015
Akhil Srivastava; Justyna Filant; Katherine Moxley; Anil K. Sood; Scott McMeekin; Rajagopal Ramesh
Exosomes are 30-100 nm bodies secreted from almost all types of cells into the extracellular spaces. They enclose in their lumen active genetic information in the form of messenger RNA (mRNA), micro RNA (miRNA), DNA and active peptides that are representative of the parental cell and can be isolated from different body fluids. Exosomes can participate in inter-cellular communication by trafficking molecules to their target cells. Because they can stably carry cargo including miRNA, mRNA, and proteins and can pass through stringent biological barriers (e.g., blood brain barrier) without eliciting an immune response, they are considered as an ideal acellular vehicle for drug delivery. In this review, we describe the structure and biogenesis of exosomes and new directions related to their role in diagnosis and treatment of diseases, especially for cancer. We also discuss potential challenges associated with exosomes that should be addressed before exosome-based therapy can be applied to clinical settings.
Cancer Research | 2016
Pinar Kanlikilicer; Mohammed H. Rashed; Recep Bayraktar; Rahul Mitra; Cristina Ivan; Xinna Zhang; Justyna Filant; Andreia M. Silva; Cristian Rodriguez-Aguayo; Emine Bayraktar; Martin Pichler; Bulent Ozpolat; George A. Calin; Anil K. Sood; Gabriel Lopez-Berestein
Cancer cells actively promote their tumorigenic behavior by reprogramming gene expression. Loading intraluminal vesicles with specific miRNAs and releasing them into the tumor microenvironment as exosomes is one mechanism of reprogramming whose regulation remains to be elucidated. Here, we report that miR-6126 is ubiquitously released in high abundance from both chemosensitive and chemoresistant ovarian cancer cells via exosomes. Overexpression of miR-6126 was confirmed in healthy ovarian tissue compared with ovarian cancer patient samples and correlated with better overall survival in patients with high-grade serous ovarian cancer. miR-6126 acted as a tumor suppressor by directly targeting integrin-β1, a key regulator of cancer cell metastasis. miR-6126 mimic treatment of cancer cells resulted in increased miR-6126 and decreased integrin-β1 mRNA levels in the exosome. Functional analysis showed that treatment of endothelial cells with miR-6126 mimic significantly reduced tube formation as well as invasion and migration capacities of ovarian cancer cells in vitro Administration of miR-6126 mimic in an orthotopic mouse model of ovarian cancer elicited a relative reduction in tumor growth, proliferating cells, and microvessel density. miR-6126 inhibition promoted oncogenic behavior by leading ovarian cancer cells to release more exosomes. Our findings provide new insights into the role of exosomal miRNA-mediated tumor progression and suggest a new therapeutic approach to disrupt oncogenic phenotypes in tumors. Cancer Res; 76(24); 7194-207. ©2016 AACR.
Molecular Cancer Therapeutics | 2014
Chad V. Pecot; Sherry Y. Wu; Seth Bellister; Justyna Filant; Rajesha Rupaimoole; Takeshi Hisamatsu; Rajat Bhattacharya; Anshumaan Maharaj; Salma H. Azam; Cristian Rodriguez-Aguayo; Archana S. Nagaraja; Maria Pia Morelli; Kshipra M. Gharpure; Trent A. Waugh; Vianey Gonzalez-Villasana; Behrouz Zand; Heather J. Dalton; Scott Kopetz; Gabriel Lopez-Berestein; Lee M. Ellis; Anil K. Sood
Despite being among the most common oncogenes in human cancer, to date, there are no effective clinical options for inhibiting KRAS activity. We investigated whether systemically delivered KRAS siRNAs have therapeutic potential in KRAS-mutated cancer models. We identified KRAS siRNA sequences with notable potency in knocking down KRAS expression. Using lung and colon adenocarcinoma cell lines, we assessed antiproliferative effects of KRAS silencing in vitro. For in vivo experiments, we used a nanoliposomal delivery platform, DOPC, for systemic delivery of siRNAs. Various lung and colon cancer models were used to determine efficacy of systemic KRAS siRNA based on tumor growth, development of metastasis, and downstream signaling. KRAS siRNA sequences induced >90% knockdown of KRAS expression, significantly reducing viability in mutant cell lines. In the lung cancer model, KRAS siRNA treatment demonstrated significant reductions in primary tumor growth and distant metastatic disease, while the addition of CDDP was not additive. Significant reductions in Ki-67 indices were seen in all treatment groups, whereas significant increases in caspase-3 activity were only seen in the CDDP treatment groups. In the colon cancer model, KRAS siRNA reduced tumor KRAS and pERK expression. KRAS siRNAs significantly reduced HCP1 subcutaneous tumor growth, as well as outgrowth of liver metastases. Our studies demonstrate a proof-of-concept approach to therapeutic KRAS targeting using nanoparticle delivery of siRNA. This study highlights the potential translational impact of therapeutic RNA interference, which may have broad applications in oncology, especially for traditional “undruggable” targets. Mol Cancer Ther; 13(12); 2876–85. ©2014 AACR.
Non-Coding RNA | 2015
Marc D. Bullock; Andreia M. Silva; Pinar Kanlikilicer-Unaldi; Justyna Filant; Mohammed H. Rashed; Anil K. Sood; Gabriel Lopez-Berestein; George A. Calin
Non-coding RNAs, such as microRNAs and long non-coding RNAs, are important regulatory molecules which are corrupted in cancer, often in a tissue and stage specific manner. Accumulated data suggests that these promising biomarkers, may also form the basis of novel targeted therapeutic strategies. The role of exosomes in cancer development and metastasis pathways is also increasingly well described. These endosome derived extracellular vesicles which are trafficked horizontally between tumor cells, and vertically between tumor cells and the surrounding microenvironment, carry bioactive cargos, which can reprogram the phenotype of recipient cells with important oncogenic consequences. Exosomes are enriched with non-coding RNA content. Within exosomes, non-coding RNAs are secreted into the peripheral circulation and other bodily fluids where they are protected from enzymatic degradation by the surrounding phospholipid membrane. Exosomes are therefore a highly promising source of diagnostic and prognostic material in cancer. Furthermore, as exosomes are natural ncRNA carriers, they may be adapted for the purpose of drug delivery by the introduction of exogenous ncRNAs or by manipulating their endogenous ncRNA content. In the current review, we will explore these highly clinically relevant themes by examining the roles of exosomal ncRNAs in cancer diagnostics, prognostics and therapy.
Oncotarget | 2017
Mohammed H. Rashed; Pinar Kanlikilicer; Cristian Rodriguez-Aguayo; Martin Pichler; Recep Bayraktar; Emine Bayraktar; Cristina Ivan; Justyna Filant; Andreia Silva; Merve Denizli; Rahul Mitra; Bulent Ozpolat; George A. Calin; Anil K. Sood; Mohamed F. Abd-Ellah; Gouda K. Helal; Gabriel Lopez Berestein
Exosomes have emerged as important mediators of diverse biological functions including tumor suppression, tumor progression, invasion, immune escape and cell-to-cell communication, through the release of molecules such as mRNAs, miRNAs, and proteins. Here, we identified differentially expressed exosomal miRNAs between normal epithelial ovarian cell line and both resistant and sensitive ovarian cancer (OC) cell lines. We found miR-940 as abundant in exosomes from SKOV3-IP1, HeyA8, and HeyA8-MDR cells. The high expression of miR-940 is associated with better survival in patients with ovarian serous cystadenocarcinoma. Ectopic expression of miR-940 inhibited proliferation, colony formation, invasion, and migration and triggered G0/G1 cell cycle arrest and apoptosis in OC cells. Overexpression of miR-940 also inhibited tumor cell growth in vivo. We showed that proto-oncogene tyrosine-protein kinase (SRC) is directly targeted by miR-940 and that miR-940 inhibited SRC expression at mRNA and protein levels. Following this inhibition, the expression of proteins downstream of SRC, such as FAK, paxillin and Akt was also reduced. Collectively, our results suggest that OC cells secrete the tumor-suppressive miR-940 into the extracellular environment via exosomes, to maintain their invasiveness and tumorigenic phenotype.
Molecular Cancer Therapeutics | 2016
Yan Huang; Lenard M. Lichtenberger; Morgan Taylor; Justin Bottsford-Miller; Monika Haemmerle; Michael J. Wagner; Yasmin A. Lyons; Sunila Pradeep; Wei Hu; Rebecca A. Previs; Jean M. Hansen; Dexing Fang; Piotr L. Dorniak; Justyna Filant; Elizabeth J. Dial; Fangrong Shen; Hiroto Hatakeyama; Anil K. Sood
To determine the efficacy of a novel and safer (for gastrointestinal tract) aspirin (aspirin-PC) in preclinical models of ovarian cancer, in vitro dose–response studies were performed to compare the growth-inhibitory effect of aspirin-PC versus aspirin on three human (A2780, SKOV3ip1, and HeyA8) and a mouse (ID8) ovarian cancer cell line over an 8-day culture period. In the in vivo studies, the aspirin test drugs were studied alone and in the presence of a VEGF-A inhibitor (bevacizumab or B20), due to an emerging role for platelets in tumor growth following antiangiogenic therapy, and we examined their underlying mechanisms. Aspirin-PC was more potent (vs. aspirin) in blocking the growth of both human and mouse ovarian cancer cells in monolayer culture. Using in vivo model systems of ovarian cancer, we found that aspirin-PC significantly reduced ovarian cancer growth by 50% to 90% (depending on the ovarian cell line). The efficacy was further enhanced in combination with Bevacizumab or B20. The growth-inhibitory effect on ovarian tumor mass and number of tumor nodules was evident, but less pronounced for aspirin and the VEGF inhibitors alone. There was no detectable gastrointestinal toxicity. Both aspirin and aspirin-PC also inhibited cell proliferation, angiogenesis, and increased apoptosis of ovarian cancer cells. In conclusion, PC-associated aspirin markedly inhibits the growth of ovarian cancer cells, which exceeds that of the parent drug, in both cell culture and in mouse model systems. We also found that both aspirin-PC and aspirin have robust antineoplastic action in the presence of VEGF-blocking drugs. Mol Cancer Ther; 15(12); 2894–904. ©2016 AACR.
Archive | 2018
Justyna Filant; Parham Nejad; Anu Paul; Bridget Simonson; Srimeenakshi Srinivasan; Xuan Zhang; Leonora Balaj; Saumya Das; Roopali Gandhi; Louise C. Laurent; Anil K. Sood
Extracellular RNAs are initiating increased interest due to their potentials in serving as novel biomarkers, mediators of intercellular communication, and therapeutic applications. As a newly emerging field, one of the main obstacles is the lack of standardized protocols for RNA isolations. Here we describe protocols for commercially available kits that have been modified to yield consistent results for isolation of extracellular RNA from both whole serum/plasma and extracellular vesicle-enriched serum/plasma samples.
Journal of the National Cancer Institute | 2017
Rebecca A. Previs; Guillermo N. Armaiz-Pena; Cristina Ivan; Heather J. Dalton; Rajesha Rupaimoole; Jean M. Hansen; Yasmin A. Lyons; Jie Huang; Monika Haemmerle; Michael J. Wagner; Kshipra M. Gharpure; Archana S. Nagaraja; Justyna Filant; Michael McGuire; Kyunghee Noh; Piotr L. Dorniak; Sarah L. Linesch; Lingegowda S. Mangala; Sunila Pradeep; Sherry Y. Wu; Anil K. Sood
Background: The PI3K/AKT/P70S6K pathway is an attractive therapeutic target in ovarian and uterine malignancies because of its high rate of deregulation and key roles in tumor growth. Here, we examined the biological effects of MSC2363318A, which is a novel inhibitor of AKT1, AKT3, and P70S6K. Methods: Orthotopic murine models of ovarian and uterine cancer were utilized to study the effect of MSC2363318A on survival and regression. For each cell line, 10 mice were treated in each of the experimental arms tested. Moreover, in vitro experiments in 21 cell lines (MTT, immunoblot analysis, plasmid transfection, reverse phase protein array [RPPA]) were carried out to characterize underlying mechanisms and potential biomarkers of response. All statistical tests were two-sided. Results: MSC2363318A decreased tumor growth and metastases in multiple murine orthotopic models of ovarian (SKOV3ip1, HeyA8, and Igrov1) and uterine (Hec1a) cancer by reducing proliferation and angiogenesis and increasing cell death. Statistically significant prolonged overall survival was achieved with combination MSC2363318A and paclitaxel in the SKUT2 (endometrioid) uterine cancer mouse model (P < .001). Mice treated with combination MSC2363318A and paclitaxel had the longest overall survival (mean = 104.2 days, 95% confidence interval [CI] = 97.0 to 111.4) compared with those treated with vehicle (mean = 61.9 days, 95% CI = 46.3 to 77.5), MSC2363318A alone (mean = 89.7 days, 95% CI = 83.0 to 96.4), and paclitaxel alone (mean = 73.6 days, 95% CI = 53.4 to 93.8). Regression and stabilization of established tumors in the Ishikawa (endometrioid) uterine cancer model was observed in mice treated with combination MSC2363318A and paclitaxel. Synergy between MSC2363318A and paclitaxel was observed in vitro in cell lines that had an IC50 of 5 µM or greater. RPPA results identified YAP1 as a candidate marker to predict cell lines that were most sensitive to MSC2363318A (R = 0.54, P = .02). After establishment of a murine ovarian cancer model of adaptive anti-angiogenic resistance (SKOV3ip1-luciferase), we demonstrate that resensitization to bevacizumab occurs with the addition of MSC2363318A, resulting in improved overall survival (P = .01) using the Kaplan-Meier method. Mice treated with bevacizumab induction followed by MSC2363318A had the longest overall survival (mean = 66.0 days, 95% CI = 53.9 to 78.1) compared with mice treated with control (mean = 42.0 days, 95% CI = 31.4 to 52.6) and bevacizumab-sensitive mice (mean = 47.2 days; 95% CI = 37.5 to 56.9). Conclusions: MSC2363318A has therapeutic efficacy in multiple preclinical models of ovarian and uterine cancer. These findings support clinical development of a dual AKT/P70S6K inhibitor.
Collaboration
Dive into the Justyna Filant's collaboration.
University of Texas Health Science Center at San Antonio
View shared research outputs