Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jutta Palmen is active.

Publication


Featured researches published by Jutta Palmen.


Clinical Chemistry | 2008

Chromosome 9p21.3 Coronary Heart Disease Locus Genotype and Prospective Risk of CHD in Healthy Middle-Aged Men

Philippa J. Talmud; Jackie A. Cooper; Jutta Palmen; Ruth C. Lovering; Fotios Drenos; Aroon D. Hingorani; Steve E. Humphries

BACKGROUND We investigated whether chromosome 9p21.3 single-nucleotide polymorphisms (SNPs), identified in coronary heart disease (CHD) genome-wide association scans, added significantly to the predictive utility for CHD of conventional risk factors (CRF) in the Framingham risk score (FRS) algorithm. METHODS In the Northwick Park Heart Study II of 2742 men (270 CHD events occurring during a 15-year prospective study), rs10757274 A>G [mean frequency G = 0.48 (95% CI 0.47-0.50)] was genotyped. Using the area under the ROC curve (A(ROC)) and the likelihood ratio (LR) statistic, we assessed the discriminatory performance of the FRS based on CRFs with and without genotype. RESULTS rs10757274 A>G was associated with incident CHD, with an effect size as reported previously [hazard ratio in GG vs AA men of 1.60 (95% CI 1.12-2.28)], independent of CRFs and family history of CHD. Although the A(ROC) for CRFs alone [0.62 (95% CI 0.58-0.66)] did not increase significantly (P = 0.14) when rs10757274 A>G genotype was added [0.64 (95% CI 0.60-0.68)], including genotype gave better fit (LR P = 0.01) and including rs10757274 moved 369 men (13.5% of the total) into more accurate risk categories. To model polygenic effects, 10 hypothetical, randomly assigned gene variants, with similar effect size and frequencies were added. Two variants made significant A(ROC) improvements to the FRS prediction (P = 0.01), whereas further variants had smaller incremental effects (final A(ROC) = 0.71, P <0.001 vs CRFs; LR vs CRFs P <0.0001). CONCLUSIONS Although overall, rs10757274 did not add substantially to the usefulness of the FRS for predicting future events, it did improve reclassification of CHD risk, and thus may have clinical utility.


American Journal of Human Genetics | 2009

Gene-centric Association Signals for Lipids and Apolipoproteins Identified via the HumanCVD BeadChip

Philippa J. Talmud; Fotios Drenos; Sonia Shah; Tina Shah; Jutta Palmen; Claudio Verzilli; Tom R. Gaunt; Jacky Pallas; Ruth C. Lovering; KaWah Li; Juan P. Casas; Reecha Sofat; Meena Kumari; Santiago Rodriguez; Toby Johnson; Stephen Newhouse; Anna F. Dominiczak; Nilesh J. Samani; Mark J. Caulfield; Peter Sever; Alice Stanton; Denis C. Shields; Sandosh Padmanabhan; Olle Melander; Claire E. Hastie; Christian Delles; Shah Ebrahim; Michael Marmot; George Davey Smith; Debbie A. Lawlor

Blood lipids are important cardiovascular disease (CVD) risk factors with both genetic and environmental determinants. The Whitehall II study (n=5592) was genotyped with the gene-centric HumanCVD BeadChip (Illumina). We identified 195 SNPs in 16 genes/regions associated with 3 major lipid fractions and 2 apolipoprotein components at p<10(-5), with the associations being broadly concordant with prior genome-wide analysis. SNPs associated with LDL cholesterol and apolipoprotein B were located in LDLR, PCSK9, APOB, CELSR2, HMGCR, CETP, the TOMM40-APOE-C1-C2-C4 cluster, and the APOA5-A4-C3-A1 cluster; SNPs associated with HDL cholesterol and apolipoprotein AI were in CETP, LPL, LIPC, APOA5-A4-C3-A1, and ABCA1; and SNPs associated with triglycerides in GCKR, BAZ1B, MLXIPL, LPL, and APOA5-A4-C3-A1. For 48 SNPs in previously unreported loci that were significant at p<10(-4) in Whitehall II, in silico analysis including the British Womens Heart and Health Study, BRIGHT, ASCOT, and NORDIL studies (total n>12,500) revealed previously unreported associations of SH2B3 (p<2.2x10(-6)), BMPR2 (p<2.3x10(-7)), BCL3/PVRL2 (flanking APOE; p<4.4x10(-8)), and SMARCA4 (flanking LDLR; p<2.5x10(-7)) with LDL cholesterol. Common alleles in these genes explained 6.1%-14.7% of the variance in the five lipid-related traits, and individuals at opposite tails of the additive allele score exhibited substantial differences in trait levels (e.g., >1 mmol/L in LDL cholesterol [approximately 1 SD of the trait distribution]). These data suggest that multiple common alleles of small effect can make important contributions to individual differences in blood lipids potentially relevant to the assessment of CVD risk. These genes provide further insights into lipid metabolism and the likely effects of modifying the encoded targets therapeutically.


Circulation | 2010

PLA2G7 Genotype, Lipoprotein-Associated Phospholipase A2 Activity, and Coronary Heart Disease Risk in 10 494 Cases and 15 624 Controls of European Ancestry

Juan P. Casas; Ewa Ninio; Andrie G. Panayiotou; Jutta Palmen; Jackie A. Cooper; Sally L. Ricketts; Reecha Sofat; Andrew N Nicolaides; James P. Corsetti; F. Gerry R. Fowkes; Ioanna Tzoulaki; Meena Kumari; Eric Brunner; Mika Kivimäki; Michael Marmot; Michael M. Hoffmann; Karl Winkler; Winfred März; Shu Ye; Heide A. Stirnadel; Kay-Tee Khaw; Steve E. Humphries; Manjinder S. Sandhu; Aroon D. Hingorani; Philippa J. Talmud

Background— Higher lipoprotein-associated phospholipase A2(Lp-PLA2) activity is associated with increased risk of coronary heart disease (CHD), making Lp-PLA2 a potential therapeutic target. PLA2G7 variants associated with Lp-PLA2 activity could evaluate whether this relationship is causal. Methods and Results— A meta-analysis including a total of 12 studies (5 prospective, 4 case-control, 1 case-only, and 2 cross-sectional studies; n=26 118) was undertaken to examine the association of the following: (1) Lp-PLA2 activity versus cardiovascular biomarkers and risk factors and CHD events (2 prospective studies; n=4884); (2) PLA2G7 single-nucleotide polymorphisms and Lp-PLA2 activity (3 prospective, 2 case-control, 2 cross-sectional studies; up to n=6094); and (3) PLA2G7 single-nucleotide polymorphisms and angiographic coronary artery disease (2 case-control, 1 case-only study; n=4971 cases) and CHD events (5 prospective, 2 case-control studies; n=5523). Lp-PLA2 activity correlated with several CHD risk markers. Hazard ratios for CHD events for the top versus bottom quartile of Lp-PLA2 activity were 1.61 (95% confidence interval, 1.31 to 1.99) and 1.17 (95% confidence interval, 0.91 to 1.51) after adjustment for baseline traits. Of 7 single-nucleotide polymorphisms, rs1051931 (A379V) showed the strongest association with Lp-PLA2 activity, with VV subjects having 7.2% higher activity than AAs. Genotype was not associated with risk markers, angiographic coronary disease (odds ratio, 1.03; 95% confidence interval, 0.80 to 1.32), or CHD events (odds ratio, 0.98; 95% confidence interval, 0.82 to 1.17). Conclusions— Unlike Lp-PLA2 activity, PLA2G7 variants associated with modest effects on Lp-PLA2 activity were not associated with cardiovascular risk markers, coronary atheroma, or CHD. Larger association studies, identification of single-nucleotide polymorphisms with larger effects, or randomized trials of specific Lp-PLA2 inhibitors are needed to confirm or refute a contributory role for Lp-PLA2 in CHD.


European Heart Journal | 2012

Comparative analysis of genome-wide association studies signals for lipids, diabetes, and coronary heart disease: Cardiovascular Biomarker Genetics Collaboration

Aspasia Angelakopoulou; Tina Shah; Reecha Sofat; Sonia Shah; Diane J. Berry; Jackie A. Cooper; Jutta Palmen; Ioanna Tzoulaki; Andrew K. C. Wong; Barbara J. Jefferis; Nikolas Maniatis; Fotios Drenos; Bruna Gigante; Rebecca Hardy; Ross C. Laxton; Karin Leander; Anna Motterle; Iain A. Simpson; Liam Smeeth; A. Thomson; Claudio Verzilli; Diana Kuh; Helen Ireland; John Deanfield; Mark J. Caulfield; Chris Wallace; Nilesh J. Samani; Patricia B. Munroe; Mark Lathrop; F. Gerry R. Fowkes

Aims To evaluate the associations of emergent genome-wide-association study-derived coronary heart disease (CHD)-associated single nucleotide polymorphisms (SNPs) with established and emerging risk factors, and the association of genome-wide-association study-derived lipid-associated SNPs with other risk factors and CHD events. Methods and results Using two case–control studies, three cross-sectional, and seven prospective studies with up to 25 000 individuals and 5794 CHD events we evaluated associations of 34 genome-wide-association study-identified SNPs with CHD risk and 16 CHD-associated risk factors or biomarkers. The Ch9p21 SNPs rs1333049 (OR 1.17; 95% confidence limits 1.11–1.24) and rs10757274 (OR 1.17; 1.09–1.26), MIA3 rs17465637 (OR 1.10; 1.04–1.15), Ch2q36 rs2943634 (OR 1.08; 1.03–1.14), APC rs383830 (OR 1.10; 1.02, 1.18), MTHFD1L rs6922269 (OR 1.10; 1.03, 1.16), CXCL12 rs501120 (OR 1.12; 1.04, 1.20), and SMAD3 rs17228212 (OR 1.11; 1.05, 1.17) were all associated with CHD risk, but not with the CHD biomarkers and risk factors measured. Among the 20 blood lipid-related SNPs, LPL rs17411031 was associated with a lower risk of CHD (OR 0.91; 0.84–0.97), an increase in Apolipoprotein AI and HDL-cholesterol, and reduced triglycerides. SORT1 rs599839 was associated with CHD risk (OR 1.20; 1.15–1.26) as well as total- and LDL-cholesterol, and apolipoprotein B. ANGPTL3 rs12042319 was associated with CHD risk (OR 1.11; 1.03, 1.19), total- and LDL-cholesterol, triglycerides, and interleukin-6. Conclusion Several SNPs predicting CHD events appear to involve pathways not currently indexed by the established or emerging risk factors; others involved changes in blood lipids including triglycerides or HDL-cholesterol as well as LDL-cholesterol. The overlapping association of SNPs with multiple risk factors and biomarkers supports the existence of shared points of regulation for these phenotypes.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2008

ANGPTL4 E40K and T266M. Effects on Plasma Triglyceride and HDL Levels, Postprandial Responses, and CHD Risk

Philippa J. Talmud; Melissa Smart; Edward Presswood; Jackie A. Cooper; Viviane Nicaud; Fotios Drenos; Jutta Palmen; Michael Marmot; S. Matthijs Boekholdt; Nicholas J. Wareham; Kay-Tee Khaw; Meena Kumari; Steve E. Humphries

Background—Angiopoietin-like 4 is a dual-function protein: an inhibitor of LPL, influencing plasma triglycerides (TGs), with angiogenic properties. We examined the association of common ANGPTL4 variants with CHD traits and risk in 5 studies (13 527 individuals). Methods and Results—The effects on plasma lipids of 6 tagging SNPs and the recently identified E40K were examined in a study of 2772 men. Only T266M (rs1044250, MAF=30%) and E40K (MAF=2%) were significantly associated with TG-lowering (−10.4%, P<0.004 and −20.4%, P<0.0001), respectively. T266M no longer showed significant associations when K40 carriers (K40+) were excluded (P=0.2). Combining data from 5 studies confirmed the TG-lowering effect of K40+ (weighted mean difference: −0.12 [95% CI −0.18, −0.05] mmol/L TG P=0.0001). Surprisingly, in the 3 prospective studies, the combined OR for CHD was 1.48 (1.11 to 1.96, P=0.007), independent of TG. In individuals with a paternal history of MI (n=332) T266M, but not E40K, showed effects on postprandial AUC TG and glucose (P=0.009 and P=0.017, respectively) compared to controls (n=370). Conclusion—Although associated with an atheroprotective lipid profile, E40K was associated with increased CHD risk, suggesting Angptl4 influences parameters beyond lipid levels. T266M showed effects only under conditions of postprandial stress. The functionality of these potential “loss-of-function” variants needs validation.


European Heart Journal | 2003

Variation in bradykinin receptor genes increases the cardiovascular risk associated with hypertension

Sukhbir S. Dhamrait; John Payne; P Li; Alun Jones; Iqbal S. Toor; J.A. Cooper; Emma Hawe; Jutta Palmen; Peter T.E. Wootton; George J. Miller; Steve E. Humphries; Hugh Montgomery

AIMS The contribution of kinins to the beneficial effects of angiotensin I converting enzyme (ACE) inhibition in cardiovascular risk reduction remains unclear. The genes for the kinin inducible B1 receptor (B(1)R) and constitutive B2 receptor (B(2)R) contain functional variants: the B(1)R-699C (rather than G) and the B(2)R(-9) (rather than +9) alleles are associated with greater mRNA expression and the B(2)R(-9) allele with reduced left ventricular hypertrophic responses. We tested whether these gene variants influenced hypertensive coronary risk in a large prospective study. METHODS AND RESULTS Two thousand, seven hundred and six previously healthy UK men (mean age at recruitment 56 years; median follow-up 10.8 years) were genotyped for the kinin receptor variants. The coronary risk attributable to systolic hypertension (SBP>/=160 mmHg) was significantly higher only in B(1)R-699GG homozygotes (HR 2.14 [1.42-3.22]; P<0.0001) and B(2)R(+9,+9) individuals (HR 3.51 [1.69-7.28]; P=0.001) but not in B(1)R-699C allele carriers (HR 0.82 [0.28-2.42]; P=0.76) or in B(2)R(-9,-9) homozygotes (HR 1.25 [0.51-3.04]; P=0.63). CONCLUSIONS Common variation in the genes for the kinin B(1)and B(2)receptors influences prospective hypertensive coronary risk. These are the first reported human data to suggest a role for the B(1)R in human coronary vascular disease, and the first prospective study to demonstrate a similar role for the B(2)R.


Nature Genetics | 2012

A common single-nucleotide variant in T is strongly associated with chordoma

Nischalan Pillay; Vincent Plagnol; Patrick Tarpey; Samira Lobo; Nadège Presneau; Karoly Szuhai; Dina Halai; Fitim Berisha; S. R. Cannon; Simon Mead; Dalia Kasperaviciute; Jutta Palmen; Philippa J. Talmud; Lars-Gunnar Kindblom; M Fernanda Amary; Roberto Tirabosco; Adrienne M. Flanagan

Chordoma is a rare malignant bone tumor that expresses the transcription factor T. We conducted an association study of 40 individuals with chordoma and 358 ancestry-matched controls, with replication in an independent cohort. Whole-exome and Sanger sequencing of T exons showed strong association of the common nonsynonymous SNP rs2305089 with chordoma risk (allelic odds ratio (OR) = 6.1, 95% confidence interval (CI) = 3.1–12.1; P = 4.4 × 10−9), a finding that is exceptional in cancers with a non-Mendelian mode of inheritance.


Cell Stress & Chaperones | 2005

Plasma heat shock protein 60 and cardiovascular disease risk: the role of psychosocial, genetic, and biological factors

Alireza Shamaei-Tousi; Andrew Steptoe; Katie O'Donnell; Jutta Palmen; Jeffrey W. Stephens; Steven J. Hurel; Michael Marmot; Karen Homer; Francesco D'Aiuto; Anthony R. M. Coates; Steve E. Humphries; Brian Henderson

Abstract The Whitehall Study is a prospective epidemiological study of cardiovascular risk factors in healthy members of the British Civil Service, which has identified psychological distress as a major risk factor for coronary heart disease. The levels of circulating Hsp60 in 860 participants from the Whitehall cohort and 761 individuals diagnosed with diabetes have been measured and related to psychological, biological, and genetic factors. In the Whitehall participants, concentrations of Hsp60 ranged from undetectable to mg/mL levels. Circulating Hsp60 correlated with total and low-density lipoprotein (LDL) cholesterol and was positively associated with a flattened slope of cortisol decline over the day. Levels of this stress protein also correlated with measures of psychological stress including psychological distress, job demand, and low emotional support. Mass spectrometric analysis of circulating immunoreactive Hsp60 reveal that it is predominantly the intact protein with no mitochondrial import peptide, suggesting that this circulating protein emanates from mitochondria. The Hsp60 is stable when added to plasma and the levels in the circulation of individuals are remarkably constant over a 4-year period, suggesting plasma levels are partly genetically controlled. Sequence analysis of the HSP60-HSP10 intergenic promoter region identified a common variant 3175 C>G where the G allele had a frequency of 0.30 and was associated with higher Hsp60 levels in 761 type 2 diabetic patients. The extended range of plasma Hsp60 concentrations in the general population is genuine and is likely to be related to genetic, biological, and psychosocial risk factors for coronary artery disease.


Human Molecular Genetics | 2009

Integrated associations of genotypes with multiple blood biomarkers linked to coronary heart disease risk

Fotios Drenos; Philippa J. Talmud; Juan P. Casas; Liam Smeeth; Jutta Palmen; Steve E. Humphries; Aroon D. Hingorani

Individuals at risk of coronary heart disease (CHD) show multiple correlations across blood biomarkers. Single nucleotide polymorphisms (SNPs) indexing biomarker differences could help distinguish causal from confounded associations because of their random allocation prior to disease. We examined the association of 948 SNPs in 122 candidate genes with 12 CHD-associated phenotypes in 2775 middle aged men (a genic scan). Of these, 140 SNPs indexed differences in HDL- and LDL-cholesterol, triglycerides, C-reactive protein, fibrinogen, factor VII, apolipoproteins AI and B, lipoprotein-associated phospholipase A2, homocysteine or folate, some with large effect sizes and highly significant P-values (e.g. 2.15 standard deviations at P = 9.2 × 10−140 for F7 rs6046 and FVII levels). Top ranking SNPs were then tested for association with additional biomarkers correlated with the index phenotype (phenome scan). Several SNPs (e.g. in APOE, CETP, LPL, APOB and LDLR) influenced multiple phenotypes, while others (e.g. in F7, CRP and FBB) showed restricted association to the index marker. SNPs influencing six blood proteins were used to evaluate the nature of the associations between correlated blood proteins utilizing Mendelian randomization. Multiple SNPs were associated with CHD-related quantitative traits, with some associations restricted to a single marker and others exerting a wider genetic ‘footprint’. SNPs indexing biomarkers provide new tools for investigating biological relationships and causal links with disease. Broader and deeper integrated analyses, linking genomic with transcriptomic, proteomic and metabolomic analysis, as well as clinical events could, in principle, better delineate CHD causing pathways amenable to treatment.


Human Mutation | 1997

Familial lipoprotein lipase (LPL) deficiency: a catalogue of LPL gene mutations identified in 20 patients from the UK, Sweden, and Italy.

Jutta Palmen; David P. R. Muller; Tracy Gibbs; June K. Lloyd; John D. Brunzell; Paul N. Durrington; Kostas Mitropoulos; John Betteridge; Gerald F. Watts; Hans Lithell; Franco Angelico; Steve E. Humphries; Philippa J. Talmud

The aim of this study was to identify mutations in the lipoprotein lipase (LPL) gene in 20 unrelated patients with familial lipoprotein deficiency (FLLD) and to investigate the genotype/phenotype relationship. The previously reported G188E mutation (Monsalve et al., J Clin Invest 86:728–734, 1990) was screened for and found to be present in seven individuals (12/40 alleles). In addition, three patients were heterozygous for the 2.0 kb insertion (Langlois et al., Proc Natl Acad Sci US 86:948–952, 1989). Two approaches were taken for new mutation detection; single‐strand conformation polymorphism and sequencing to identify micro‐mutations in the proximal promoter and exons 1–9 of the LPL gene and Southern blotting to identify gross mutations. Ten different point mutations were found (W86G, A158T, H183Q, G188E, S193R, P207L, L252X, N291S, M301T, L303P). Additionally, a two nucleotide deletion in exon 6 (Δ1006–1007), a six nucleotide deletion in exon 8 (Δ1441–1447), and a silent substitution in the wobble position of codon E118 were identified. In vitro mutagenesis and expression in COS‐B cells suggested that the A158T and S193R substitutions virtually abolished enzyme activity. In analysing the genotype/phenotype relationship, there was no strong association between age at diagnosis, severity of symptoms, lipid levels, and the nature/position of the mutation. Triglyceride levels, however, were higher in compound heterozygotes compared to true homozygotes, possibly reflecting increased instability of heterodimers. Overall, 29 of 40 (72.5%) mutant alleles were identified. Failure to identify the mutation in 11 alleles might reflect the inadequacy of the method or the possibility that mutations lie within regions of the gene not screened in the study because of lack of availability of sequence. Hum Mutat 10:465–473, 1997.

Collaboration


Dive into the Jutta Palmen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P.J. Talmud

University College London

View shared research outputs
Top Co-Authors

Avatar

S.E. Humphries

University College London

View shared research outputs
Top Co-Authors

Avatar

Mika Kivimäki

University College London

View shared research outputs
Top Co-Authors

Avatar

Juan P. Casas

University College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge