Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jutta Sharbati is active.

Publication


Featured researches published by Jutta Sharbati.


PLOS ONE | 2011

Integrated MicroRNA-mRNA-Analysis of Human Monocyte Derived Macrophages upon Mycobacterium avium subsp. hominissuis Infection

Jutta Sharbati; Astrid Lewin; Barbara Kutz-Lohroff; Elisabeth Kamal; Ralf Einspanier; Soroush Sharbati

Background Many efforts have been made to understand basal mechanisms of mycobacterial infections. Macrophages are the first line of host immune defence to encounter and eradicate mycobacteria. Pathogenic species have evolved different mechanisms to evade host response, e.g. by influencing macrophage apoptotic pathways. However, the underlying molecular regulation is not fully understood. A new layer of eukaryotic regulation of gene expression is constituted by microRNAs. Therefore, we present a comprehensive study for identification of these key regulators and their targets in the context of host macrophage response to mycobacterial infections. Methodology/Principal Findings We performed microRNA as well as mRNA expression analysis of human monocyte derived macrophages infected with several Mycobacterium avium hominissuis strains by means of microarrays as well as quantitative reverse transcription PCR (qRT-PCR). The data revealed the ability of all strains to inhibit apoptosis by transcriptional regulation of BCL2 family members. Accordingly, at 48 h after infection macrophages infected with all M. avium strains showed significantly decreased caspase 3 and 7 activities compared to the controls. Expression of let-7e, miR-29a and miR-886-5p were increased in response to mycobacterial infection at 48 h. The integrated analysis of microRNA and mRNA expression as well as target prediction pointed out regulative networks identifying caspase 3 and 7 as potential targets of let-7e and miR-29a, respectively. Consecutive reporter assays verified the regulation of caspase 3 and 7 by these microRNAs. Conclusions/Significance We show for the first time that mycobacterial infection of human macrophages causes a specific microRNA response. We furthermore outlined a regulatory network of potential interactions between microRNAs and mRNAs. This study provides a theoretical concept for unveiling how distinct mycobacteria could manipulate host cell response. In addition, functional relevance was confirmed by uncovering the control of major caspases 3 and 7 by let-7e and miR-29a, respectively.


BMC Genomics | 2010

Deciphering the porcine intestinal microRNA transcriptome.

Soroush Sharbati; Marc R. Friedländer; Jutta Sharbati; Lena Hoeke; Wei Chen; Andreas Keller; Peer F Stähler; Nikolaus Rajewsky; Ralf Einspanier

BackgroundWhile more than 700 microRNAs (miRNAs) are known in human, a comparably low number has been identified in swine. Because of the close phylogenetic distance to humans, pigs serve as a suitable model for studying e.g. intestinal development or disease. Recent studies indicate that miRNAs are key regulators of intestinal development and their aberrant expression leads to intestinal malignancy.ResultsHere, we present the identification of hundreds of apparently novel miRNAs in the porcine intestine. MiRNAs were first identified by means of deep sequencing followed by miRNA precursor prediction using the miRDeep algorithm as well as searching for conserved miRNAs. Second, the porcine miRNAome along the entire intestine (duodenum, proximal and distal jejunum, ileum, ascending and transverse colon) was unraveled using customized miRNA microarrays based on the identified sequences as well as known porcine and human ones. In total, the expression of 332 intestinal miRNAs was discovered, of which 201 represented assumed novel porcine miRNAs. The identified hairpin forming precursors were in part organized in genomic clusters, and most of the precursors were located on chromosomes 3 and 1, respectively. Hierarchical clustering of the expression data revealed subsets of miRNAs that are specific to distinct parts of the intestine pointing to their impact on cellular signaling networks.ConclusionsIn this study, we have applied a straight forward approach to decipher the porcine intestinal miRNAome for the first time in mammals using a piglet model. The high number of identified novel miRNAs in the porcine intestine points out their crucial role in intestinal function as shown by pathway analysis. On the other hand, the reported miRNAs may share orthologs in other mammals such as human still to be discovered.


Theriogenology | 2010

Differential gene expression in bovine elongated (Day 17) embryos produced by somatic cell nucleus transfer and in vitro fertilization

L. Rodriguez-Alvarez; Jutta Sharbati; Soroush Sharbati; J.F. Cox; Ralf Einspanier; F. O. Castro

Somatic cloning in cattle is associated with impaired embryo development, caused by inappropriate epigenetic reprogramming during embryogenesis; however, there is a paucity of data regarding gene expression at the critical elongation and peri-implantation stages. The objective of the present study was to identify genes differentially expressed in bovine cloned embryos at Day 17 of development (Day 0=day of nucleus transfer or IVF). Day 7 blastocysts (Hand Made Cloned or IVP) were transferred to recipient cattle and collected at Day 17. The efficiency of recovery of elongated embryos was similar, however cloned embryos elongated less than IVP embryos (91.8+/-45.8 vs. 174+/-50mm) and fewer had embryonic discs (63 vs. 83%). Qualitative and quantitative PCR detected expression of OCT4, NANOG, IFNtau, EOMES, FGF4, SOX2, and CDX2 in all IVP embryos. In most cloned embryos, NANOG and FGF4 were absent (verified by qPCR); NANOG, EOMES, and FGF4 were underexpressed, whereas IFNtau was overexpressed in cloned embryos. Based on qPCRs, other genes, i.e., SPARC, SNRB1, and CBPP22, were down-regulated in cloned embryos, whereas HSP70 and TDKP1 were overexpressed. In bovine microarrays, 47 genes (3.6%) were deregulated in cloned embryos, including several involved in trophoblast growth and differentiation. In conclusion, we inferred that these data were indicative of incomplete epigenetic reprogramming after cloning; this could lead to aberrant gene expression and subsequently early pregnancy loss. There was an apparent association between incomplete morphological elongation and aberrant reprogramming of a subset of genes critical for early embryonic development.


PLOS ONE | 2013

Intestinal Salmonella typhimurium Infection Leads to miR-29a Induced Caveolin 2 Regulation

Lena Hoeke; Jutta Sharbati; Kamlesh Pawar; Andreas Keller; Ralf Einspanier; Soroush Sharbati

Background Salmonella are able to modulate host cell functions facilitating both uptake and resistance to cellular host defence mechanisms. While interactions between bacterial modulators and cellular proteins have been the main focus of Salmonella research, relatively little is known about mammalian gene regulation in response to Salmonella infection. A major class of mammalian gene modulators consists of microRNAs. For our study we examined interactions of microRNAs and regulated mRNAs in mammalian intestinal Salmonella infections using a piglet model. Methodology/Principal Findings After performing microRNA as well as mRNA specific microarray analysis of ileal samples from Salmonella infected as well as control piglets, we integrated expression analysis with target prediction identifying microRNAs that mainly regulate focal adhesion as well as actin cytoskeleton pathways. Particular attention was given to miR-29a, which was involved in most interactions including Caveolin 2. RT-qPCR experiments verified up-regulation of miR-29a after infection while its predicted target Caveolin 2 was significantly down-regulated as examined by transcript and protein detection. Reporter gene assays as well as RNAi experiments confirmed Caveolin 2 to be a miR-29a target. Knock-down of Caveolin 2 in intestinal epithelial cells resulted in retarded proliferation as well as increased bacterial uptake. In addition, our experiments showed that Caveolin 2 regulates the activation of the small Rho GTPase CDC42 but apparently not RAC1 in human intestinal cells. Conclusions/Significance Our study outlines for the first time important regulation pathways in intestinal Salmonella infection pointing out that focal adhesion and organisation of actin cytoskeleton are regulated by microRNAs. Functional relevance is shown by miR-29a mediated Caveolin 2 regulation, modulating the activation state of CDC42. Further analysis of examined interactions may support the discovery of novel strategies impairing the uptake of intracellular pathogens.


BMC Genomics | 2012

Quantification and accurate normalisation of small RNAs through new custom RT-qPCR arrays demonstrates Salmonella-induced microRNAs in human monocytes

Soroush Sharbati; Jutta Sharbati; Lena Hoeke; Marc Bohmer; Ralf Einspanier

BackgroundSmall interfering and non-coding RNAs regulate gene expression across all kingdoms of life. MicroRNAs constitute an important group of metazoan small RNAs regulating development but also disease. Accordingly, in functional genomics microRNA expression analysis sheds more and more light on the dynamic regulation of gene expression in various cellular processes.ResultsWe have developed custom RT-qPCR arrays allowing for accurate quantification of 31 small RNAs in triplicate using a 96 well format. In parallel, we provide accurate normalisation of microRNA expression data based on the quantification of 5 reference snRNAs. We have successfully employed such arrays to study microRNA regulation during human monocyte differentiation as well as Salmonella infection. Besides well-known protagonists such as miR-146 or miR-155, we identified the up-regulation of miR-21, miR-222, miR-23b, miR-24, miR-27a as well as miR-29 upon monocyte differentiation or infection, respectively.ConclusionsThe provided protocol for RT-qPCR arrays enables straight-forward microRNA expression analysis. It is fully automatable, compliant with the MIQE guidelines and can be completed in only 1 day. The application of these arrays revealed microRNAs that may mediate monocyte host defence mechanisms by regulating the TGF-β signalling upon Salmonella infection. The introduced arrays are furthermore suited for customised quantification of any class of small non-coding RNAs as exemplified by snRNAs and thus provide a versatile tool for ubiquitous applications.


Frontiers in Cellular and Infection Microbiology | 2016

Mycobacterium bovis BCG Interferes with miR-3619-5p Control of Cathepsin S in the Process of Autophagy

Kamlesh Pawar; Jutta Sharbati; Ralf Einspanier; Soroush Sharbati

Main survival mechanism of pathogenic mycobacteria is to escape inimical phagolysosomal environment inside the macrophages. Many efforts have been made to unravel the molecular mechanisms behind this process. However, little is known about the involvement of microRNAs (miRNAs) in the regulation of phagolysosomal biosynthesis and maturation. Based on a bottom up approach, we searched for miRNAs that were involved in phagolysosomal processing events in the course of mycobacterial infection of macrophages. After infecting THP-1 derived macrophages with viable and heat killed Mycobacterium bovis BCG (BCG), early time points were identified after co-localization studies of the phagosomal marker protein LAMP1 and BCG. Differences in LAMP1 localization on the phagosomes of both groups were observed at 30 min and 4 h. After in silico based pre-selection of miRNAs, expression analysis at the identified time points revealed down-regulation of three miRNAs: miR-3619-5p, miR-637, and miR-324-3p. Consequently, most likely targets were predicted that were supposed to be mutually regulated by these three studied miRNAs. The lysosomal cysteine protease Cathepsin S (CTSS) and Rab11 family-interacting protein 4 (RAB11FIP4) were up-regulated and were considered to be connected to lysosomal trafficking and autophagy. Interaction studies verified the regulation of CTSS by miR-3619-5p. Down-regulation of CTSS by ectopic miR-3619-5p as well as its specific knockdown by siRNA affected the process of autophagy in THP-1 derived macrophages.


Cell death discovery | 2017

TFF3-dependent resistance of human colorectal adenocarcinoma cells HT-29/B6 to apoptosis is mediated by miR-491-5p regulation of lncRNA PRINS

Carlos Hanisch; Jutta Sharbati; Barbara Kutz-Lohroff; Otmar Huber; Ralf Einspanier; Soroush Sharbati

Tumour necrosis factor-α (TNF-α) is a double-edged cytokine associated with pathogenesis of inflammatory-related cancers being also able to induce cancer cell death. In the process of tumour development or metastasis, cancer cells can become resistant to TNF-α. In trefoil factor 3 (TFF3) overexpressing colorectal adenocarcinoma cells (HT-29/B6), we observed enhanced resistance against TNF-α/interferon gamma-induced apoptosis. TFF3 is a secreted small peptide that supports intestinal tissue repair but is also involved in intestinal tumour progression and scattering. We hypothesised that TFF3 rescues intestinal epithelial cancer cells from TNF-α-induced apoptosis by involving regulatory RNA networks. In silico-based expression analysis revealed TFF3-mediated regulation of selected microRNAs as well as long non-coding RNAs (lncRNAs), whereas miR-491-5p was identified to target the lncRNA ‘psoriasis susceptibility-related RNA gene induced by stress’ (PRINS). RNA interference-based gain- and loss-of-function experiments examined miR-491-PRINS axis to exert the TFF3-mediated phenotype. Chemical inhibition of selected pathways showed that phosphatidylinositol 3-kinase/AKT accounts for TFF3-mediated downregulation of miR-491-5p and accumulation of PRINS. Moreover, we showed that PRINS colocalises with PMAIP1 (NOXA) in nuclei of HT-29/B6 possessing inhibitory effects. Immunoprecipitation experiments proved molecular interaction of PMAIP1 with PRINS. Our study provides an insight into RNA regulatory networks that determine resistance of colorectal cancer cells to apoptosis.


Scientific Reports | 2015

Small molecule and RNAi induced phenotype transition of expanded and primary colonic epithelial cells

Jutta Sharbati; Carlos Hanisch; Robert Pieper; Ralf Einspanier; Soroush Sharbati

Recent progress in mammalian intestinal epithelial cell culture led to novel concepts of tissue modeling. Especially the development of phenotypically stable cell lines from individual animals enables an investigation of distinct intestinal loci and disease states. We here report primary and prolonged culture of normal porcine epithelial cells from colon for cell line development. In addition, a novel primary three-dimensional intestinal culture system is presented, which generated organoids composed of a highly polarized epithelial layer lining a core of subepithelial tissue. Cellular characterization of monolayer cell lines revealed epithelial identity and pointed to a proliferative crypt cell phenotype. We evaluated both RNAi and chemical approaches to induce epithelial differentiation in generated cell lines by targeting promoters of epithelial to mesenchymal transition (EMT). By in silico prediction and ectopic expression, miR-147b was proven to be a potent trigger of intestinal epithelial cell differentiation. Our results outline an approach to generate phenotypically stable cell lines expanded from primary colonic epithelial cultures and demonstrate the relevance of miR-147b and chemical inhibitors for promoting epithelial differentiation features.


PLOS ONE | 2013

Structural Analysis of microRNA-Target Interaction by Sequential Seed Mutagenesis and Stem-Loop 3' RACE

Marc Bohmer; Jutta Sharbati; Jennifer zur Bruegge; Ralf Einspanier; Soroush Sharbati

Background As a consequence of recent RNAseq efforts, miRNAomes of diverse tissues and species are available. However, most interactions between microRNAs and regulated mRNAs are still to be deciphered. While in silico analysis of microRNAs results in prediction of hundreds of potential targets, bona-fide interactions have to be verified e.g. by luciferase reporter assays using fused target sites as well as controls incorporating mutated seed sequences. The aim of this study was the development of a straightforward approach for sequential mutation of multiple target sites within a given 3’ UTR. Methodology/Principal Findings The established protocol is based on Seed Mutagenesis Assembly PCR (SMAP) allowing for rapid identification of microRNA target sites. Based on the presented approach, we were able to determine the transcription factor NKX3.1 as a genuine target of miR-155. The sequential mutagenesis of multiple microRNA target sites was examined by miR-29a mediated CASP7 regulation, which revealed one of two predicted target sites as the predominant site of interaction. Since 3’ UTR sequences of non-model organisms are either lacking in databases or computationally predicted, we developed a Stem-Loop 3’ UTR RACE PCR (SLURP) for efficient generation of required 3’ UTR sequence data. The stem-loop primer allows for first strand cDNA synthesis by nested PCR amplification of the 3’ UTR. Besides other applications, the SLURP method was used to gain data on porcine CASP7 3’UTR evaluating evolutionary conservation of the studied interaction. Conclusions/Significance Sequential seed mutation of microRNA targets based on the SMAP approach allows for rapid structural analysis of several target sites within a given 3’ UTR. The combination of both methods (SMAP and SLURP) enables targeted analysis of microRNA binding sites in hitherto unknown mRNA 3’ UTRs within a few days.


Archives of Toxicology | 2016

Proposed criteria for the evaluation of the scientific quality of mandatory rat and mouse feeding trials with whole food/feed derived from genetically modified plants

Kerstin Schmidt; Janine Döhring; Christian Kohl; Maria Pla; Esther J. Kok; Debora C. M. Glandorf; René Custers; Hilko van der Voet; Jutta Sharbati; Ralf Einspanier; Dagmar Zeljenková; Jana Tulinska; Armin Spök; Clare Alison; Dieter Schrenk; Annette Pöting; Ralf Wilhelm; Joachim Schiemann; Pablo Steinberg

In recent years, animal feeding trials conducted with whole food/feed have been a focal issue in the controversy on the safety assessment of genetically modified (GM) plants and derived food/feed. Within the scientific community and among stakeholders, quite different views have been expressed on how these studies should be conducted, analysed and interpreted, what they might add in terms of information relevant to safety and whether 90-day rodent feeding trials should be mandatory. Despite the fact that the Commission Implementing Regulation (EU) No. 503/2013 (specifying the requirements for the risk assessment of GM food/feed) requests mandatory 90-day feeding trials for GM plants with single transformation events, the controversy continues. This is due to the fact that in 2016 the European Commission will have to review this particular provision in the legislation (ibid, Article 12), and because of questions raised by long-term feeding studies with GM maize.

Collaboration


Dive into the Jutta Sharbati's collaboration.

Top Co-Authors

Avatar

Ralf Einspanier

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos Hanisch

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Marc Bohmer

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kerstin Schmidt

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Lena Hoeke

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Jana Tulinska

Slovak Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge