Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jyh-Feng Lu is active.

Publication


Featured researches published by Jyh-Feng Lu.


Bioresource Technology | 2009

Adsorption of toxic mercury(II) by an extracellular biopolymer poly(γ-glutamic acid).

B. Stephen Inbaraj; Jinn-Shyan Wang; Jyh-Feng Lu; F.Y. Siao; B.H. Chen

Adsorption of mercury(II) by an extracellular biopolymer, poly(gamma-glutamic acid) (gamma-PGA), was studied as a function of pH, temperature, agitation time, ionic strength, light and heavy metal ions. An appreciable adsorption occurred at pH>3 and reached a maximum at pH 6. Isotherms were well predicted by Redlich-Peterson model with a dominating Freundlich behavior, implying the heterogeneous nature of mercury(II) adsorption. The adsorption followed an exothermic and spontaneous process with increased orderliness at solid/solution interface. The adsorption was rapid with 90% being attained within 5 min for a 80 mg/L mercury(II) solution, and the kinetic data were precisely described by pseudo second order model. Ionic strength due to added sodium salts reduced the mercury(II) binding with the coordinating ligands following the order: Cl(-) >SO(4)(2-) >>NO(3)(-). Both light and heavy metal ions decreased mercury(II) binding by gamma-PGA, with calcium(II) ions showing a more pronounced effect than monovalent sodium and potassium ions, while the interfering heavy metal ions followed the order: Cu(2+) >> Cd(2+) > Zn(2+). Distilled water adjusted to pH 2 using hydrochloric acid recovered 98.8% of mercury(II), and gamma-PGA reuse for five cycles of operation showed a loss of only 6.5%. IR spectra of gamma-PGA and Hg(II)-gamma-PGA revealed binding of mercury(II) with carboxylate and amide groups on gamma-PGA.


Journal of Agricultural and Food Chemistry | 2009

In Vitro Binding of Heavy Metals by an Edible Biopolymer Poly(γ-glutamic acid)

F.Y. Siao; Jyh-Feng Lu; Jinn-Shyan Wang; B. Stephen Inbaraj; B. H. Chen

An edible biopolymer poly(gamma-glutamic acid) (gamma-PGA) was evaluated for possible use as an chelating/binding agent in the treatment of metal intoxication in humans. In vitro binding of the toxic heavy metals lead and cadmium as affected by pH, contact time, metal concentration, gamma-PGA dose, and essential metals was carried out in a batch mode. A maximum binding occurred in the pH range 5-7, corresponding to the gastrointestinal pH values except for the stomach. Binding isotherms at pH 5.5 were well described by the heterogeneous models (Freundlich and Toth), while the lead isotherm at pH 2.5 showed a S-type curve, which was fitted as multiple curves with the Langmuir model and a shifted-squared Langmuir model. However, no adsorption occurred for cadmium at pH 2.5. The maximum binding capacities of lead and cadmium at pH 5.5 were 213.58 and 41.85 mg/g, respectively. A curvilinear biphasic Scatchard plot signified a multisite interaction of metals. Binding was extremely rapid with 70-100% of total adsorption being attained in 2 min. Kinetics at low and high metal concentrations obeyed pseudo-first-order and pseudo-second-order models, respectively. The gamma-PGA dose-activity relationship revealed a low dose of gamma-PGA to be more efficient in binding a large amount of metals. Incorporation of Cu, Zn, Fe, Mg, Ca, and K showed only a minor influence on lead binding but significantly reduced the binding of cadmium.


Journal of Agricultural and Food Chemistry | 2011

Antiproliferation Effect and Apoptosis Mechanism of Prostate Cancer Cell PC-3 by Flavonoids and Saponins Prepared from Gynostemma pentaphyllum

Tse-Chou Cheng; Jyh-Feng Lu; Jinn-Shyan Wang; Li-Ju Lin; Hung-I. Kuo; B.H. Chen

The objectives of this study were to investigate the antiproliferation and apoptosis mechanism of saponin and flavonoid fractions from Gynostemma pentaphyllum (Thunb.) Makino on prostate cancer cell PC-3. Both flavonoid and saponin fractions were isolated by a column chromatographic method with Cosmosil 75C(18)-OPN as adsorbent and elution solvents of ethanol-water (30:70, v/v) for the former and 100% ethanol for the latter, followed by high-performance liquid chromatography-tandem mass spectrometry analysis. On the basis of the MTT assay, the saponin and flavonoid fraction were comparably effective in inhibiting the growth of PC-3 cells, with the IC(50) being 39.3 and 33.3 μg/mL, respectively. Additionally, both fractions induced an arrest of PC-3 cell cycle at both S and G2/M phases, with both early and late apoptotic cell populations showing a dose-dependent rise. The Western blot assay indicated that the incorporation of flavonoid or saponin fraction could modulate the expression of G2 and M checkpoint regulators, cyclins A and B, and the antiapoptotic proteins Bcl-2 and Bcl-xl and pro-apoptotic proteins Bad and Bax. The expression of the caspase-3 and its activated downstream substrate effectors, DFF45 and poly (ADP-ribose) polymerase-1 (PARP-1), was also increased and followed a dose-dependent manner. All of these findings suggest that the apoptosis of PC-3 cells may proceed through the intrinsic mitochondria pathway.


Nature Communications | 2013

Probing water micro-solvation in proteins by water catalysed proton-transfer tautomerism

Jiun-Yi Shen; Wei-Chih Chao; Chun Liu; Hsiao-An Pan; Hsiao-Ching Yang; Chi-Lin Chen; Yi-Kang Lan; Li-Ju Lin; Jinn-Shyan Wang; Jyh-Feng Lu; Steven Chun-Wei Chou; Kuo-Chun Tang; Pi-Tai Chou

Scientists have made tremendous efforts to gain understanding of the water molecules in proteins via indirect measurements such as molecular dynamic simulation and/or probing the polarity of the local environment. Here we present a tryptophan analogue that exhibits remarkable water catalysed proton-transfer properties. The resulting multiple emissions provide unique fingerprints that can be exploited for direct sensing of a site-specific water environment in a protein without disrupting its native structure. Replacing tryptophan with the newly developed tryptophan analogue we sense different water environments surrounding the five tryptophans in human thromboxane A₂ synthase. This development may lead to future research to probe how water molecules affect the folding, structures and activities of proteins.


Molecules | 2014

Flavonoids from Gynostemma pentaphyllum Exhibit Differential Induction of Cell Cycle Arrest in H460 and A549 Cancer Cells

Ko-Chung Tsui; Tzu-Hsuan Chiang; Jinn-Shyan Wang; Li-Ju Lin; Wei-Chih Chao; B.H. Chen; Jyh-Feng Lu

Flavonoids, containing mainly kaempferol rhamnohexoside derivatives, were extracted from Gynostemma pentaphyllum (G. pentaphyllum) and their potential growth inhibition effects against H460 non-small cell lung cancer cells was explored and compared to that on A549 cells. The extracted flavonoids were found to exhibit antiproliferation effects against H460 cells (IC50 = 50.2 μg/mL), although the IC50 of H460 is 2.5-fold that of A549 cells (IC50 = 19.8 μg/mL). Further investigation revealed that H460 cells are more susceptible to kaempferol than A549, whereas A549 cell growth is better inhibited by kaempferol rhamnohexoside derivatives as compared with H460. In addition, flavonoids from G. pentaphyllum induced cell cycle arrest at both S and G2/M phases with concurrent modulated expression of the cellular proteins cyclin A, B, p53 and p21 in A549 cells, but not H460. On the contrary, apoptosis and concomitant alteration in balance of BCL-2 and BAX expression as well as activation of caspase-3 were equally affected between both cells by flavonoid treatment. These observations strongly suggest the growth inhibition discrepancy between H460 and A549 following flavonoid treatment can be attributed to the lack of cell cycle arrest in H460 cells and the differences between H460 and A549 cells may serve as contrasting models for further mechanistic investigations.


Journal of Physical Chemistry B | 2015

Probing water environment of Trp59 in ribonuclease T1: insight of the structure-water network relationship.

Wei-Chih Chao; Jiun-Yi Shen; Jyh-Feng Lu; Jinn-Shyan Wang; Hsiao-Ching Yang; Kevin Wee; Li-Ju Lin; Yi-Ching Kuo; Cheng-Han Yang; Shih-Hui Weng; Huai-Ching Huang; You-Hua Chen; Pi-Tai Chou

In this study, we used the tryptophan analogue, (2,7-aza)Trp, which exhibits water catalyzed proton transfer isomerization among N(1)-H, N(7)-H, and N(2)-H isomers, to probe the water environment of tryptophan-59 (Trp59) near the connecting loop region of ribonuclease Tl (RNase T1) by replacing the tryptophan with (2,7-aza)Trp. The resulting (2,7-aza)Trp59 triple emission bands and their associated relaxation dynamics, together with relevant data of 7-azatryptophan and molecular dynamics (MD) simulation, lead us to propose two Trp59 containing conformers in RNase T1, namely, the loop-close and loop-open forms. Water is rich in the loop-open form around the proximity of (2,7-aza)Trp59, which catalyzes (2,7-aza)Trp59 proton transfer in the excited state, giving both N(1)-H and N(7)-H isomer emissions. The existence of N(2)-H isomer in the loop-open form, supported by the MD simulation, is mainly due to the specific hydrogen bonding between N(2)-H proton and water molecule that bridges N(2)-H and the amide oxygen of Pro60, forming a strong network. The loop-close form is relatively tight in space, which squeezes water molecules out of the interface of α-helix and β2 strand, joined by the connecting loop region; accordingly, the water-scant environment leads to the sole existence of the N(1)-H isomer emission. MD simulation also points out that the Trp-water pairs appear to preferentially participate in a hydrogen bond network incorporating polar amino acid moieties on the protein surface and bulk waters, providing the structural dynamic features of the connecting loop region in RNase T1.


Biochemistry | 2013

Probing Ligand Binding to Thromboxane Synthase

Wei-Chih Chao; Jyh-Feng Lu; Jinn-Shyan Wang; Hsiao-Ching Yang; Tai-An Pan; Steven Chun-Wei Chou; Lee-Ho Wang; Pi-Tai Chou

Various fluorescence experiments and computer simulations were utilized to gain further understanding of thromboxane A(2) synthase (TXAS), which catalyzes an isomerization of prostaglandins H(2) to give rise to thromboxane A(2) along with a fragmentation reaction to 12-L-hydroxy-5,8,10-heptadecatrienoic acid and malondialdehyde. In this study, 2-p-toluidinylnaphthalene-6-sulfonic acid (TNS) was utilized as a probe to assess the spatial relationship and binding dynamics of ligand-TXAS interactions by steady-state and time-resolved fluorescence spectroscopy. The proximity between TNS and each of the five tryptophan (Trp) residues in TXAS was examined through the fluorescence quenching of Trp by TNS via an energy transfer process. The fluorescence quenching of Trp by TNS was abolished in the W65F mutant, indicating that Trp65 is the major contributor to account for energy transfer with TNS. Furthermore, both competitive binding experiments and the computer-simulated TXAS structure with clotrimazole as a heme ligand strongly suggest that TXAS has a large active site that can simultaneously accommodate TNS and clotrimazole without mutual interaction between TNS and heme. Displacement of TNS by Nile Red, a fluorescence dye sensitive to environmental polarity, indicates that the TNS binding site in TXAS is likely to be hydrophobic. The Phe cluster packing near the binding site of TNS may be involved in facilitating the binding of multiple ligands to the large active site of TXAS.


Journal of Cellular and Molecular Medicine | 2015

Induction of p53-independent growth inhibition in lung carcinoma cell A549 by gypenosides

Jung-Sen Liu; Tzu-Hsuan Chiang; Jinn-Shyan Wang; Li-Ju Lin; Wei-Chih Chao; Baskaran Stephen Inbaraj; Jyh-Feng Lu; B.H. Chen

The objectives of this study are to investigate antiproliferative effect and mechanisms of bioactive compounds from Gynostemma pentaphyllum (G. pentaphyllum) on lung carcinoma cell A549. Saponins, carotenoids and chlorophylls were extracted and fractionated by column chromatography, and were subjected to high‐performance liquid chromatography‐mass spectrometry analyses. The saponin fraction, which consisted mainly of gypenoside (Gyp) XXII and XXIII, rather than the carotenoid and chlorophyll ones, was effective in inhibiting A549 cell growth in a concentration‐ and a time‐dependent manner as evaluated using 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay. The estimated half maximal inhibitory concentration (IC50) of Gyp on A549 cells was 30.6 μg/ml. Gyp was further demonstrated to induce an apparent arrest of the A549 cell cycle at both the S phase and the G2/M phase, accompanied by a concentration‐ and a time‐dependent increase in the proportions of both the early and late apoptotic cells. Furthermore, Gyp down‐regulated cellular expression of cyclin A and B as well as BCL‐2, while up‐regulated the expression of BAX, DNA degradation factor 35 KD, poly [ADP‐ribose] polymerase 1, p53, p21 and caspase‐3. Nevertheless, both the treatment of a p53 inhibitor, pifithrin‐α, and the small hairpin RNA‐mediated p53 knockdown in the A549 cells did not alter the growth inhibition effect induced by Gyp. As a result, the cell cycle arrest and apoptosis of A549 cells induced by Gyp would most likely proceed through p53‐independent pathway(s).


Biophysical Journal | 2016

The In Situ Tryptophan Analogue Probes the Conformational Dynamics in Asparaginase Isozymes

Wei-Chih Chao; Jiun-Yi Shen; Cheng-Han Yang; Yi-Kang Lan; Jui-Hung Yuan; Li-Ju Lin; Hsiao-Ching Yang; Jyh-Feng Lu; Jinn-Shyan Wang; Kevin Wee; You-Hua Chen; Pi-Tai Chou

Dynamic water solvation is crucial to protein conformational reorganization and hence to protein structure and functionality. We report here the characterization of water dynamics on the L-asparaginase structural homology isozymes L-asparaginases I (AnsA) and II (AnsB), which are shown via fluorescence spectroscopy and dynamics in combination with molecular dynamics simulation to have distinct catalytic activity. By use of the tryptophan (Trp) analog probe 2,7-diaza-tryptophan ((2,7-aza)Trp), which exhibits unique water-catalyzed proton-transfer properties, AnsA and AnsB are shown to have drastically different local water environments surrounding the single Trp. In AnsA, (2,7-aza)Trp exhibits prominent green N(7)-H emission resulting from water-catalyzed excited-state proton transfer. In stark contrast, the N(7)-H emission is virtually absent in AnsB, which supports a water-accessible and a water-scant environment in the proximity of Trp for AnsA and AnsB, respectively. In addition, careful analysis of the emission spectra and corresponding relaxation dynamics, together with the results of molecular dynamics simulations, led us to propose two structural states associated with the rearrangement of the hydrogen-bond network in the vicinity of Trp for the two Ans. The water molecules revealed in the proximity of the Trp residue have semiquantitative correlation with the observed emission spectral variations of (2,7-aza)Trp between AnsA and AnsB. Titration of aspartate, a competitive inhibitor of Ans, revealed an increase in N(7)-H emission intensity in AnsA but no obvious spectral changes in AnsB. The changes in the emission profiles reflect the modulation of structural states by locally confined environment and trapped-water collective motions.


Journal of the American Chemical Society | 2011

Probing the interaction between prostacyclin synthase and prostaglandin H2 analogues or inhibitors via a combination of resonance Raman spectroscopy and molecular dynamics simulation approaches.

Wei-Chih Chao; Jyh-Feng Lu; Jinn-Shyan Wang; Hsiao-Ching Yang; Hsiao-Hui Chen; Yi-Kang Lan; Ya-Chien Yu; Pi-Tai Chou; Lee-Ho Wang

In an aim to probe the structure-function relationship of prostacyclin synthase (PGIS), resonance Raman (RR) spectroscopy and molecular dynamic (MD) simulation approaches have been exploited to characterize the heme conformation and heme-protein matrix interactions for human PGIS (hPGIS) and zebrafish PGIS (zPGIS) in the presence and absence of ligands. The high-frequency RR (1300-1700 cm(-1)) indicates that the heme group is in the ferric, six-coordinate, low-spin state for both resting and ligand-bound hPGIS/zPGIS. The low-frequency RR (300-500 cm(-1)) and MD simulation reveal a salient difference in propionate-protein matrix interactions between hPGIS and zPGIS, as evident by a predominant propionate bending vibration at 386 cm(-1) in resting hPGIS, but two vibrations near 370 and 387 cm(-1) in resting zPGIS. Upon binding of a substrate analogue (U46619, U51605, or U44069), both hPGIS and zPGIS induce a distinctive perturbation of the propionate-protein matrix interactions, resulting in similar Raman shifts to ~381 cm(-1). On the contrary, the bending vibration remains unchanged upon binding of inhibitor/ligand (minoxidil, clotrimazole, or miconazole), indicating that these inhibitors/ligands do not interfere with the propionate-protein matrix interactions. These results, together with subtle changes in vinyl bending modes, demonstrate drastically different RR shifts with heme conformational changes in both hPGIS and zPGIS upon different ligand bindings, suggesting that PGIS exhibits a ligand-specific heme conformational change to accommodate the substrate binding. This substrate-induced modulation of the heme conformation may confer high product fidelity upon PGIS catalysis.

Collaboration


Dive into the Jyh-Feng Lu's collaboration.

Top Co-Authors

Avatar

Jinn-Shyan Wang

Fu Jen Catholic University

View shared research outputs
Top Co-Authors

Avatar

Li-Ju Lin

Fu Jen Catholic University

View shared research outputs
Top Co-Authors

Avatar

Wei-Chih Chao

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Hsiao-Ching Yang

Fu Jen Catholic University

View shared research outputs
Top Co-Authors

Avatar

Pi-Tai Chou

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Jiun-Yi Shen

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Jao-Shwann Liang

Memorial Hospital of South Bend

View shared research outputs
Top Co-Authors

Avatar

B.H. Chen

Fu Jen Catholic University

View shared research outputs
Top Co-Authors

Avatar

Cheng-Han Yang

Fu Jen Catholic University

View shared research outputs
Top Co-Authors

Avatar

Kun-Long Hung

Fu Jen Catholic University

View shared research outputs
Researchain Logo
Decentralizing Knowledge