Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where K. A. Gray is active.

Publication


Featured researches published by K. A. Gray.


Journal of Animal Science | 2014

Feed intake, average daily gain, feed efficiency, and real-time ultrasound traits in Duroc pigs: II. Genomewide association

S. Jiao; Christian Maltecca; K. A. Gray; J. P. Cassady

Efficient use of feed resources has become a clear challenge for the U.S. pork industry as feed costs continue to be the largest variable expense. The availability of the Illumina Porcine60K BeadChip has greatly facilitated whole-genome association studies to identify chromosomal regions harboring genes influencing those traits. The current study aimed at identifying genomic regions associated with variation in feed efficiency and several production traits in a Duroc terminal sire population, including ADFI, ADG, feed conversion ratio, residual feed intake (RFI), real-time ultrasound back fat thickness (BF), ultrasound muscle depth, intramuscular fat content (IMF), birth weight (BW at birth), and weaning weight (BW at weaning). Single trait association analyses were performed using Bayes B models with 35,140 SNP on 18 autosomes after quality control. Significance of nonoverlapping 1-Mb length windows (n = 2,380) were tested across 3 QTL inference methods: posterior distribution of windows variances from Monte Carlo Markov Chain, naive Bayes factor, and nonparametric bootstrapping. Genes within the informative QTL regions for the traits were annotated. A region ranging from166 to 140 Mb (4-Mb length) on SSC 1, approximately 8 Mb upstream of the MC4R gene, was significantly associated with ADFI, ADG, and BF, where SOCS6 and DOK6 are proposed as the most likely candidate genes. Another region affecting BW at weaning was identified on SSC 4 (84-85 Mb), harboring genes previously found to influence both human and cattle height: PLAG1, CHCHD7, RDHE2 (or SDR16C5), MOS, RPS20, LYN, and PENK. No QTL were identified for RFI, IMF, and BW at birth. In conclusion, we have identified several genomic regions associated with traits affecting nutrient utilization that could be considered for future genomic prediction to improve feed utilization.


Journal of Dairy Science | 2011

Genetic evaluations for measures of the milk-flow curve in the Italian Brown Swiss population

K. A. Gray; F. Vacirca; A. Bagnato; A.B. Samoré; Attilio Rossoni; Christian Maltecca

The objective of this study was to estimate heritabilities and genetic correlations between milk-release parameters, somatic cell score, milk yield, and udder functional traits in the Italian Brown Swiss population. Data were available from 37,511 cows over a span of 12 yr (1997-2008) from 1,592 herds. Milking flows were recorded for each individual once during lactation. Three different analyses were performed to estimate variance components for all the traits of interest. The first analysis included single control data milk yield, somatic cell score, maximum milk flow, average milk flow, time of plateau, decreasing time, and total milking time, whereas the second analysis included milk-release parameters as well as total udder score, udder depth, and 305-d milk yield and somatic cell score as dependent variables. The third analysis included total milking time, 305-d milk yield and somatic cell score, total udder score, udder depth, and ratios of maximum milk flow over total milking time (R1), time of plateau (R2), and decreasing time (R3) to estimate the relationship between the shape of the milk-release curves and important milking traits. Results from the first and second analysis found similar heritabilities for milkability traits ranging from 0.05 to 0.41 with genetic correlations between production traits and flow traits ranging from low to moderate values. Positive genetic correlations were found among production, somatic cell score, and milkability traits. The third analysis showed that R1 had the greatest heritability of the ratio traits (0.37) with large genetic correlations with R2 and R3, a low correlation with 305-d somatic cell score, and no correlation with 305-d milk yield. Estimated responses to selection over 5 generations were also calculated using different indexes, which included either flow or ratio traits. The results of this study show that it is possible to use information collected through portable flowmeters to improve milkability traits. Using a set of variables or traits to describe the overall release of milk can be an advantageous selection strategy to decrease management costs while maintaining milk production.


Journal of Animal Science | 2015

Variance component estimates for alternative litter size traits in swine

A.M. Putz; Francesco Tiezzi; Christian Maltecca; K. A. Gray; M. T. Knauer

Litter size at d 5 (LS5) has been shown to be an effective trait to increase total number born (TNB) while simultaneously decreasing preweaning mortality. The objective of this study was to determine the optimal litter size day for selection (i.e., other than d 5). Traits included TNB, number born alive (NBA), litter size at d 2, 5, 10, 30 (LS2, LS5, LS10, LS30, respectively), litter size at weaning (LSW), number weaned (NW), piglet mortality at d 30 (MortD30), and average piglet birth weight (BirthWt). Litter size traits were assigned to biological litters and treated as a trait of the sow. In contrast, NW was the number of piglets weaned by the nurse dam. Bivariate animal models included farm, year-season, and parity as fixed effects. Number born alive was fit as a covariate for BirthWt. Random effects included additive genetics and the permanent environment of the sow. Variance components were plotted for TNB, NBA, and LS2 to LS30 using univariate animal models to determine how variances changed over time. Additive genetic variance was minimized at d 7 in Large White and at d 14 in Landrace pigs. Total phenotypic variance for litter size traits decreased over the first 10 d and then stabilized. Heritability estimates increased between TNB and LS30. Genetic correlations between TNB, NBA, and LS2 to LS29 with LS30 plateaued within the first 10 d. A genetic correlation with LS30 of 0.95 was reached at d 4 for Large White and at d 8 for Landrace pigs. Heritability estimates ranged from 0.07 to 0.13 for litter size traits and MortD30. Birth weight had an h of 0.24 and 0.26 for Large White and Landrace pigs, respectively. Genetic correlations among LS30, LSW, and NW ranged from 0.97 to 1.00. In the Large White breed, genetic correlations between MortD30 with TNB and LS30 were 0.23 and -0.64, respectively. These correlations were 0.10 and -0.61 in the Landrace breed. A high genetic correlation of 0.98 and 0.97 was observed between LS10 and NW for Large White and Landrace breeds, respectively. This would indicate that NW could possibly be used as an effective maternal trait, given a low level of cross-fostering, to avoid back calculating litter size traits from piglet records. Litter size at d 10 would be a compromise between gain in litter size at weaning and minimizing the potentially negative effects of the nurse dam and direct additive genetics of the piglets, as they are expected to increase throughout lactation.


Animal Genetics | 2011

A genome‐wide association study of direct gestation length in US Holstein and Italian Brown populations

Christian Maltecca; K. A. Gray; K.A. Weigel; J. P. Cassady; M. S. Ashwell

Direct gestation length influences economically important traits in dairy cattle that are related to birth and peri-natal survival of the calf. The objective of this study was to identify single nucleotide polymorphisms (SNPs) that are significantly associated with direct gestation length through a genome-wide association study. Data used in the analysis included 7,308,194 cow gestation lengths from daughters of 4743 United States Holstein sires in the Cooperative Dairy DNA Repository population and 580,157 gestation lengths from 749 sires in the Italian Brown population. Association analysis included 36,768 and 35,082 SNPs spanning all autosomes for Holstein and Brown Swiss, respectively. Multiple shrinkage Bayesian was employed. Estimates of heritability for both populations were moderate, with values of 0.32 (±0.03) and 0.29 (±0.02) for Holstein and Brown Swiss, respectively. A panel of SNPs was identified, which included SNPs that have significant effects on direct gestation length, of which the strongest candidate region is located on chromosome 18. Two regions not previously linked to direct calving ease and calf survival were identified on chromosome 7 and 28, corresponding to regions that contain genes related to embryonic development and foetal development. SNPs were also identified in regions that have been previously mapped for calving difficulty and longevity. This study identifies target regions for the investigation of direct foetal effects, which are a significant factor in determining the ease of calving.


BMC Genetics | 2015

Genome-wide association study on legendre random regression coefficients for the growth and feed intake trajectory on Duroc Boars

Jeremy T. Howard; Shihui Jiao; Francesco Tiezzi; Y. Huang; K. A. Gray; Christian Maltecca

BackgroundFeed intake and growth are economically important traits in swine production. Previous genome wide association studies (GWAS) have utilized average daily gain or daily feed intake to identify regions that impact growth and feed intake across time. The use of longitudinal models in GWAS studies, such as random regression, allows for SNPs having a heterogeneous effect across the trajectory to be characterized. The objective of this study is therefore to conduct a single step GWAS (ssGWAS) on the animal polynomial coefficients for feed intake and growth.ResultsCorrected daily feed intake (DFIAdj) and average daily weight measurements (DBWAvg) on 8981 (n = 525,240 observations) and 5643 (n = 283,607 observations) animals were utilized in a random regression model using Legendre polynomials (order = 2) and a relationship matrix that included genotyped and un-genotyped animals. A ssGWAS was conducted on the animal polynomials coefficients (intercept, linear and quadratic) for animals with genotypes (DFIAdj: n = 855; DBWAvg: n = 590). Regions were characterized based on the variance of 10-SNP sliding windows GEBV (WGEBV). A bootstrap analysis (n =1000) was conducted to declare significance. Heritability estimates for the traits trajectory ranged from 0.34-0.52 to 0.07-0.23 for DBWAvg and DFIAdj, respectively. Genetic correlations across age classes were large and positive for both DBWAvg and DFIAdj, albeit age classes at the beginning had a small to moderate genetic correlation with age classes towards the end of the trajectory for both traits. The WGEBV variance explained by significant regions (P < 0.001) for each polynomial coefficient ranged from 0.2-0.9 to 0.3-1.01 % for DBWAvg and DFIAdj, respectively. The WGEBV variance explained by significant regions for the trajectory was 1.54 and 1.95 % for DBWAvg and DFIAdj. Both traits identified candidate genes with functions related to metabolite and energy homeostasis, glucose and insulin signaling and behavior.ConclusionsWe have identified regions of the genome that have an impact on the intercept, linear and quadratic terms for DBWAvg and DFIAdj. These results provide preliminary evidence that individual growth and feed intake trajectories are impacted by different regions of the genome at different times.


Journal of Orthopaedic Research | 2013

Changes in chondrocyte gene expression following in vitro impaction of porcine articular cartilage in an impact injury model

M. S. Ashwell; Michael G. Gonda; K. A. Gray; Christian Maltecca; Audrey T. O'Nan; J. P. Cassady; Peter Mente

Our objective was to monitor chondrocyte gene expression at 0, 3, 7, and 14 days following in vitro impaction to the articular surface of porcine patellae. Patellar facets were either axially impacted with a cylindrical impactor (25 mm/s loading rate) to a load level of 2,000 N or not impacted to serve as controls. After being placed in organ culture for 0, 3, 7, or 14 days, total RNA was isolated from full thickness cartilage slices and gene expression measured for 17 genes by quantitative real‐time RT‐PCR. Targeted genes included those encoding proteins involved with biological stress, inflammation, or anabolism and catabolism of cartilage extracellular matrix. Some gene expression changes were detected on the day of impaction, but most significant changes occurred at 14 days in culture. At 14 days in culture, 10 of the 17 genes were differentially expressed with col1a1 most significantly up‐regulated in the impacted samples, suggesting impacted chondrocytes may have reverted to a fibroblast‐like phenotype.


Genetics Selection Evolution | 2012

Effectiveness of genomic prediction on milk flow traits in dairy cattle

K. A. Gray; J. P. Cassady; Y. Huang; Christian Maltecca

BackgroundMilkability, primarily evaluated by measurements of milking speed and time, has an economic impact in milk production of dairy cattle. Recently the Italian Brown Swiss Breeders Association has included milking speed in genetic evaluations. The main objective of this study was to investigate the possibility of implementing genomic selection for milk flow traits in the Italian Brown Swiss population and thereby evaluate the potential of genomic selection for novel traits in medium-sized populations. Predicted breeding values and reliabilities based on genomic information were compared with those obtained from traditional breeding values.MethodsMilk flow measures for total milking time, ascending time, time of plateau, descending time, average milk flow and maximum milk flow were collected on 37 213 Italian Brown Swiss cows. Breeding values for genotyped sires (n = 1351) were obtained from standard BLUP and genome-enhanced breeding value techniques utilizing two-stage and single-step methods. Reliabilities from a validation dataset were estimated and used to compare accuracies obtained from parental averages with genome-enhanced predictions.ResultsGenome-enhanced breeding values evaluated using two-stage methods had similar reliabilities with values ranging from 0.34 to 0.49 for the different traits. Across two-stage methods, the average increase in reliability from parental average was approximately 0.17 for all traits, with the exception of descending time, for which reliability increased to 0.11. Combining genomic and pedigree information in a single-step produced the largest increases in reliability over parent averages: 0.20, 0.24, 0.21, 0.14, 0.20 and 0.21 for total milking time, ascending time, time of plateau, descending time, average milk flow and maximum milk flow, respectively.ConclusionsUsing genomic models increased the accuracy of prediction compared to traditional BLUP methods. Our results show that, among the methods used to predict genome-enhanced breeding values, the single-step method was the most successful at increasing the reliability for most traits. The single-step method takes advantage of all the data available, including phenotypes from non-genotyped animals, and can easily be incorporated into current breeding evaluations.


Journal of Animal Science | 2017

The relationship between different measures of feed efficiency and feeding behavior traits in Duroc pigs.

Duc Lu; S. Jiao; Francesco Tiezzi; M. T. Knauer; Y. Huang; K. A. Gray; Christian Maltecca

Utilization of feed in livestock species consists of a wide range of biological processes, and therefore, its efficiency can be expressed in various ways, including direct measurement, such as daily feed intake, as well as indicator measures, such as feeding behavior. Measuring feed efficiency is important to the swine industry, and its accuracy can be enhanced by using automated feeding systems, which record feed intake and associated feeding behavior of individual animals. Each automated feeder space is often shared among several pigs and therefore raises concerns about social interactions among pen mates with regard to feeding behavior. The study herein used a data set of 14,901 Duroc boars with individual records on feed intake, feeding behavior, and other off-test traits. These traits were modeled with and without the random spatial effect of Pen_Room, a concatenation of room and pen, or random social interaction among pen mates. The nonheritable spatial effect of common Pen-Room was observed for traits directly measuring feed intake and accounted for up to 13% of the total phenotypic variance in the average daily feeding rate. The social interaction effect explained larger proportions of phenotypic variation in all the traits studied, with the highest being 59% for ADFI in the group of feeding behaviors, 73% for residual feed intake (RFI; RFI4 and RFI6) in the feed efficiency traits, and 69% for intramuscular fat percentage in the off-test traits. After accounting for the social interaction effect, residual BW gain and RFI and BW gain (RIG) were found to have the heritability of 0.38 and 0.18, respectively, and had strong genetic correlations with growth and off-test traits. Feeding behavior traits were found to be moderately heritable, ranging from 0.14 (ADFI) to 0.52 (average daily occupation time), and some of them were strongly correlated with feed efficiency measures; for example, there was a genetic correlation of 0.88 between ADFI and RFI6. Our work suggested that accounting for the social common pen effect was important for estimating genetic parameters of traits recorded by the automated feeding system. Residual BW gain and RIG appeared to be two robust measures of feed efficiency. Feeding behavior measures are worth further investigation as indicators of feed efficiency.


Journal of Animal Science | 2016

The use of multiple imputation for the accurate measurements of individual feed intake by electronic feeders

S. Jiao; Francesco Tiezzi; Y. Huang; K. A. Gray; Christian Maltecca

Obtaining accurate individual feed intake records is the key first step in achieving genetic progress toward more efficient nutrient utilization in pigs. Feed intake records collected by electronic feeding systems contain errors (erroneous and abnormal values exceeding certain cutoff criteria), which are due to feeder malfunction or animal-feeder interaction. In this study, we examined the use of a novel data-editing strategy involving multiple imputation to minimize the impact of errors and missing values on the quality of feed intake data collected by an electronic feeding system. Accuracy of feed intake data adjustment obtained from the conventional linear mixed model (LMM) approach was compared with 2 alternative implementations of multiple imputation by chained equation, denoted as MI (multiple imputation) and MICE (multiple imputation by chained equation). The 3 methods were compared under 3 scenarios, where 5, 10, and 20% feed intake error rates were simulated. Each of the scenarios was replicated 5 times. Accuracy of the alternative error adjustment was measured as the correlation between the true daily feed intake (DFI; daily feed intake in the testing period) or true ADFI (the mean DFI across testing period) and the adjusted DFI or adjusted ADFI. In the editing process, error cutoff criteria are used to define if a feed intake visit contains errors. To investigate the possibility that the error cutoff criteria may affect any of the 3 methods, the simulation was repeated with 2 alternative error cutoff values. Multiple imputation methods outperformed the LMM approach in all scenarios with mean accuracies of 96.7, 93.5, and 90.2% obtained with MI and 96.8, 94.4, and 90.1% obtained with MICE compared with 91.0, 82.6, and 68.7% using LMM for DFI. Similar results were obtained for ADFI. Furthermore, multiple imputation methods consistently performed better than LMM regardless of the cutoff criteria applied to define errors. In conclusion, multiple imputation is proposed as a more accurate and flexible method for error adjustments in feed intake data collected by electronic feeders.


BMC Veterinary Research | 2012

Estimates of marker effects for measures of milk flow in the Italian brown Swiss dairy cattle population

K. A. Gray; Christian Maltecca; A. Bagnato; M. Dolezal; Attilio Rossoni; A.B. Samoré; J. P. Cassady

BackgroundMilkability is a complex trait that is characterized by milk flow traits including average milk flow rate, maximum milk flow rate and total milking time. Milkability has long been recognized as an economically important trait that can be improved through selection. By improving milkability, management costs of milking decrease through reduced labor and improved efficiency of the automatic milking system, which has been identified as an important factor affecting net profit. The objective of this study was to identify markers associated with electronically measured milk flow traits, in the Italian Brown Swiss population that could potentially improve selection based on genomic predictions.ResultsSires (n = 1351) of cows with milk flow information were genotyped for 33,074 single nucleotide polymorphism (SNP) markers distributed across 29 Bos taurus autosomes (BTA). Among the six milk flow traits collected, ascending time, time of plateau, descending time, total milking time, maximum milk flow and average milk flow, there were 6,929 (time of plateau) to 14,585 (maximum milk flow) significant SNP markers identified for each trait across all BTA. Unique regions were found for each of the 6 traits providing evidence that each individual milk flow trait offers distinct genetic information about milk flow. This study was also successful in identifying functional processes and genes associated with SNPs that influences milk flow.ConclusionsIn addition to verifying the presence of previously identified milking speed quantitative trait loci (QTL) within the Italian Brown Swiss population, this study revealed a number of genomic regions associated with milk flow traits that have never been reported as milking speed QTL. While several of these regions were not associated with a known gene or QTL, a number of regions were associated with QTL that have been formerly reported as regions associated with somatic cell count, somatic cell score and udder morphometrics. This provides further evidence of the complexity of milk flow traits and the underlying relationship it has with other economically important traits for dairy cattle. Improved understanding of the overall milking pattern will aid in identification of cows with lower management costs and improved udder health.

Collaboration


Dive into the K. A. Gray's collaboration.

Top Co-Authors

Avatar

Christian Maltecca

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Francesco Tiezzi

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Y. Huang

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

J. P. Cassady

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Jeremy T. Howard

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

S. Jiao

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Duc Lu

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

M. S. Ashwell

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

M. T. Knauer

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge