Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. T. Knauer is active.

Publication


Featured researches published by M. T. Knauer.


Journal of Animal Science | 2011

Phenotypic and genetic correlations between gilt estrus, puberty, growth, composition, and structural conformation traits with first-litter reproductive measures

M. T. Knauer; J. P. Cassady; D. W. Newcom; M. T. See

The objective was to estimate correlations of gilt estrus, puberty, growth, composition, and structural conformation traits with first-litter reproductive measures. Four groups of gilts (n = 1,225; Genetic Improvement Services of NC, Newton Grove, NC) entered the NC Swine Evaluation Station (Clayton, NC) averaging 162 d of age and were observed daily for symptoms of estrus. Once symptoms of first estrus were observed in 70% of gilts, recording of symptoms of estrus in all gilts occurred every 12 h for 30 d, utilizing fence-line boar contact. Subjective estrous traits were maximum and total strength of standing reflex, as observed with and without the presence of a boar, and strength of vulva reddening and swelling. Objective estrous traits consisted of vulva redness, vulva width, length of estrus, and age at puberty. Growth and composition traits included BW at puberty, days to 114 kg, and 10th rib backfat and LM area at 114 kg and at puberty. Subjective structural conformation traits were muscle mass, rib width, front leg side view, rear leg side view, front legs front view, rear legs rear view, and locomotion. First-litter sow traits included if gilt farrowed (Stay), age at first farrowing (AFF), total number of piglets born (TNB), and weaning to conception interval (WCI). Variance components were estimated using an animal model with AIREMLF90 for linear traits and THRGIBBS1F90 for categorical traits. Heritability estimates for Stay, AFF, and TNB were 0.14, 0.22, and 0.02, respectively. Genetic correlations between length of estrus, the standing reflex traits, and age at puberty with Stay were 0.34, 0.34 to 0.74, and -0.27, respectively, and with AFF were -0.11, -0.04 to -0.41, and 0.76, respectively. Days to 114 kg had genetic associations with Stay, AFF, and TNB of 0.52, -0.25, and -0.08, respectively. Backfat at 114 kg had genetic correlations with Stay, AFF, and TNB of -0.29, 0.14, and 0.47, respectively. Vulva redness and TNB were negatively correlated phenotypically (r = -0.14) and genetically (r = -0.53). Associations between structural conformation traits with Stay, AFF, TNB, and WCI were generally low to moderate and favorable. Selection for longer length of estrus, stronger standing reflex, or younger age at puberty would increase the proportion of gilts that farrow and reduce age at first farrowing.


Journal of Animal Science | 2015

Variance component estimates for alternative litter size traits in swine

A.M. Putz; Francesco Tiezzi; Christian Maltecca; K. A. Gray; M. T. Knauer

Litter size at d 5 (LS5) has been shown to be an effective trait to increase total number born (TNB) while simultaneously decreasing preweaning mortality. The objective of this study was to determine the optimal litter size day for selection (i.e., other than d 5). Traits included TNB, number born alive (NBA), litter size at d 2, 5, 10, 30 (LS2, LS5, LS10, LS30, respectively), litter size at weaning (LSW), number weaned (NW), piglet mortality at d 30 (MortD30), and average piglet birth weight (BirthWt). Litter size traits were assigned to biological litters and treated as a trait of the sow. In contrast, NW was the number of piglets weaned by the nurse dam. Bivariate animal models included farm, year-season, and parity as fixed effects. Number born alive was fit as a covariate for BirthWt. Random effects included additive genetics and the permanent environment of the sow. Variance components were plotted for TNB, NBA, and LS2 to LS30 using univariate animal models to determine how variances changed over time. Additive genetic variance was minimized at d 7 in Large White and at d 14 in Landrace pigs. Total phenotypic variance for litter size traits decreased over the first 10 d and then stabilized. Heritability estimates increased between TNB and LS30. Genetic correlations between TNB, NBA, and LS2 to LS29 with LS30 plateaued within the first 10 d. A genetic correlation with LS30 of 0.95 was reached at d 4 for Large White and at d 8 for Landrace pigs. Heritability estimates ranged from 0.07 to 0.13 for litter size traits and MortD30. Birth weight had an h of 0.24 and 0.26 for Large White and Landrace pigs, respectively. Genetic correlations among LS30, LSW, and NW ranged from 0.97 to 1.00. In the Large White breed, genetic correlations between MortD30 with TNB and LS30 were 0.23 and -0.64, respectively. These correlations were 0.10 and -0.61 in the Landrace breed. A high genetic correlation of 0.98 and 0.97 was observed between LS10 and NW for Large White and Landrace breeds, respectively. This would indicate that NW could possibly be used as an effective maternal trait, given a low level of cross-fostering, to avoid back calculating litter size traits from piglet records. Litter size at d 10 would be a compromise between gain in litter size at weaning and minimizing the potentially negative effects of the nurse dam and direct additive genetics of the piglets, as they are expected to increase throughout lactation.


Journal of Animal Science | 2010

Estimates of variance components for genetic correlations among swine estrus traits.

M. T. Knauer; J. P. Cassady; D. W. Newcom; M. T. See

Variance components and genetic correlations were estimated among estrus, puberty, growth, and composition traits in Landrace-Large White gilts (n = 1,225; Genetic Improvement Services, Newton Grove, NC) from 59 sires and 330 dams. Four groups of gilts entered the North Carolina Swine Evaluation Station in Clayton at an average age of 162 d and were checked daily for estrus. Once 70% of gilts had reached puberty, recording of estrus symptoms occurred every 12 h for 30 d, using fence-line boar contact. Subjective estrus traits were maximum strength of standing reflex with or without a boar present, total strength of standing reflex with or without a boar present, and strength of vulva reddening and swelling. Objective estrus traits consisted of vulva redness, vulva width, length of estrus in consecutive days based on 12-h observations, and age at puberty (AGEPUB). Growth and composition traits included puberty weight, days to 114 kg (DYS), 10th-rib backfat, and 10th-rib LM area at 114 kg (BF, LMA) and puberty. Variance components were estimated using AIREMLF90 with an animal model. All models included gilt development diet class and breed composition as fixed effects, entry age as a covariate (except DYS, BF, and LMA), a random common litter effect, and a random animal genetic effect. Heritability estimates for length of estrus, maximum strength of the standing reflex with a boar, total strength of the standing reflex with a boar, maximum strength of the standing reflex without a boar, total strength of the standing reflex without a boar, vulva redness, strength of vulva reddening and swelling, and vulva width were 0.21, 0.13, 0.26, 0.42, 0.42, 0.26, 0.45, and 0.58, respectively. Heritability estimates for AGEPUB, puberty weight, 10th-rib backfat at puberty, 10th-rib LM area at puberty, DYS, BF, and LMA were 0.29, 0.39, 0.41, 0.38, 0.24, 0.47, and 0.39, respectfully. Common litter effect estimates ranged from 0.01 to 0.09. The estimated genetic correlation between length of estrus and maximum strength of standing reflex with a boar was 0.99. Genetic correlations between AGEPUB and length of estrus, maximum strength of standing reflex with a boar, and vulva redness were -0.23, -0.32, and 0.20, respectively. Length of estrus had positive genetic associations with DYS and BF (0.30 and 0.29, respectively). It was concluded that past selection for lean BW gain may have weakened the strength of the standing reflex and that sufficient genetic variation exists to make selection for improved swine estrus traits effective.


Journal of Animal Science | 2017

The relationship between different measures of feed efficiency and feeding behavior traits in Duroc pigs.

Duc Lu; S. Jiao; Francesco Tiezzi; M. T. Knauer; Y. Huang; K. A. Gray; Christian Maltecca

Utilization of feed in livestock species consists of a wide range of biological processes, and therefore, its efficiency can be expressed in various ways, including direct measurement, such as daily feed intake, as well as indicator measures, such as feeding behavior. Measuring feed efficiency is important to the swine industry, and its accuracy can be enhanced by using automated feeding systems, which record feed intake and associated feeding behavior of individual animals. Each automated feeder space is often shared among several pigs and therefore raises concerns about social interactions among pen mates with regard to feeding behavior. The study herein used a data set of 14,901 Duroc boars with individual records on feed intake, feeding behavior, and other off-test traits. These traits were modeled with and without the random spatial effect of Pen_Room, a concatenation of room and pen, or random social interaction among pen mates. The nonheritable spatial effect of common Pen-Room was observed for traits directly measuring feed intake and accounted for up to 13% of the total phenotypic variance in the average daily feeding rate. The social interaction effect explained larger proportions of phenotypic variation in all the traits studied, with the highest being 59% for ADFI in the group of feeding behaviors, 73% for residual feed intake (RFI; RFI4 and RFI6) in the feed efficiency traits, and 69% for intramuscular fat percentage in the off-test traits. After accounting for the social interaction effect, residual BW gain and RFI and BW gain (RIG) were found to have the heritability of 0.38 and 0.18, respectively, and had strong genetic correlations with growth and off-test traits. Feeding behavior traits were found to be moderately heritable, ranging from 0.14 (ADFI) to 0.52 (average daily occupation time), and some of them were strongly correlated with feed efficiency measures; for example, there was a genetic correlation of 0.88 between ADFI and RFI6. Our work suggested that accounting for the social common pen effect was important for estimating genetic parameters of traits recorded by the automated feeding system. Residual BW gain and RIG appeared to be two robust measures of feed efficiency. Feeding behavior measures are worth further investigation as indicators of feed efficiency.


Livestock Science | 2012

Gilt development traits associated with genetic line, diet and fertility

M. T. Knauer; J. P. Cassady; D.W. Newcom; M. T. See


Journal of Animal Breeding and Genetics | 2018

A comparison of accuracy validation methods for genomic and pedigree-based predictions of swine litter size traits using Large White and simulated data

A.M. Putz; Francesco Tiezzi; Christian Maltecca; K.A. Gray; M. T. Knauer


Journal of Animal Science | 2017

287 The effects of feeding narasin (Skycis) on late finishing pig performance.

M. T. Knauer; R. A. Arentson


Journal of Animal Science | 2018

335 Effect of Soybean Meal Supplementation during Gestation on Piglet Quality.

M. T. Knauer; E. van Heugten


Journal of Animal Science | 2018

98 Sow Functional Teat Number Impacts Colostrum Intake and Piglet Throughput.

J. G. Wiegert; M. T. Knauer


Journal of Animal Science | 2018

150 Genetic Selection for Age at Puberty Altered Sow Colostrum Production and Piglet Survival.

J. G. Wiegert; G. M. See; M. T. Knauer

Collaboration


Dive into the M. T. Knauer's collaboration.

Top Co-Authors

Avatar

J. G. Wiegert

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

E. van Heugten

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

G. M. See

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

C. Garrison

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Christian Maltecca

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Francesco Tiezzi

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

J. A. Erceg

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

J. P. Cassady

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

M. T. See

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

A.M. Putz

North Carolina State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge