Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where K. B. Johnson is active.

Publication


Featured researches published by K. B. Johnson.


Phytopathology | 2002

Antibiosis Contributes to Biological Control of Fire Blight by Pantoea agglomerans Strain Eh252 in Orchards

Virginia O. Stockwell; K. B. Johnson; D. Sugar; Joyce E. Loper

ABSTRACT Fire blight, caused by Erwinia amylovora, is the most serious bacterial disease of pear and apple trees. Biological control with strains of Pantoea agglomerans (syn. Erwinia herbicola) may provide an effective disease management strategy for fire blight. Most strains of P. agglomerans evaluated for suppression of fire blight produce compounds that inhibit the growth of E. amylovora in culture. The role of these inhibitory compounds in fire blight suppression in orchard environments has not been studied. In seven field trials in Oregon, we compared the population dynamics and disease suppression with P. agglomerans Eh252, a strain that produces a single antibiotic, with its near-isogenic antibiotic-deficient derivative, strain 10:12. Water or suspensions of Eh252 or 10:12 (1 x 10(8) CFU/ml) were applied at 30 and 70% bloom to pear or apple trees. Aqueous suspensions of freeze-dried cells of E. amylovora (3 x 10(5) CFU/ml) were applied at full bloom. Additional trees were treated with streptomycin or oxytetracycline at 30 and 70% bloom and in some experiments, 1 day after application of the pathogen. Population sizes of Eh252 or 10:12 on pear blossoms were estimated by spreading dilutions of blossom washes on culture media. Average population sizes of Eh252 and 10:12 on blossoms ranged from 10(5) to 10(7) CFU, and in five of six trials, the relative area under the population curve of Eh252 was not significantly different than that of its derivative 10:12. Both Eh252 and 10:12 reduced the growth of the pathogen on blossoms compared with inoculated water-treated controls. Eh252 significantly decreased the incidence of fire blight in six of seven field trials compared with the incidence on water-treated trees, and 10:12 similarly reduced the incidence of fire blight in four of seven trials. In three of seven field trials, trees treated with Eh252 had a significantly lower incidence of fire blight compared with trees treated 3 with 10:12. Overall,3 Eh252 reduced the incidence of fire blight by 55 +/- 8%, 10:12 by 30 +/- 6%, streptomycin by 75 +/- 4%, and oxytetracycline by 16 +/- 14%. The effectiveness of strain 10:12 compared with water treatment indicates that other mechanisms (e.g., competitive exclusion or habitat modification) also contribute to disease suppression by P. agglomerans. The increased suppression of fire blight by the parental strain Eh252 compared with the antibiotic-deficient mutant 10:12 indicates that antibiosis is an important mechanism of biological control of fire blight.


Phytopathology | 1998

Establishment of bacterial antagonists of Erwinia amylovora on pear and apple blossoms as influenced by inoculum preparation.

Virginia O. Stockwell; K. B. Johnson; Joyce E. Loper

The influence of inoculum preparation on the establishment of bacterial antagonists that suppress fire blight and Erwinia amylovora on blossoms was evaluated. Aqueous suspensions of Pseudomonas fluorescens A506, E. herbicola C9-1R, or E. amylovora 153N were prepared from cells harvested from the surface of an agar medium or from cells that were lyophilized after culture under similar conditions. Bacterial suspensions (1 x 10(8) CFU/ml) were sprayed on pear and apple trees at 50% bloom near midday. The incidence of recovery (proportion of blossoms containing detectable populations) and the population sizes of the bacteria on individual blossoms with detectable populations were followed over a period of several days. Fluorescent microspheres (1 mum in diameter) were added to sprays at a concentration of 1 x 10(7) microspheres per ml to mark blossoms that were open during application of bacteria. After dilution-plating, the stigmas and styles of each blossom were examined for the presence of microspheres with an epifluorescence microscope. In three of five trials, bacteria applied as suspensions of lyophilized cells were recovered from a greater proportion of blossoms than bacterial cells harvested directly from culture media. Every blossom harvested within 6 days after spraying had microspheres present on the surfaces of the styles and stigmas; thus, lack of establishment of detectable populations, rather than escape of blossoms from spray inoculation, accounted for the differences in proportion of blossoms colonized by the different preparations of bacteria. The use of lyophilized cells in field trials decreased variability in the establishment of bacteria on blossoms.


Plant Disease | 1998

Secondary colonization of pear blossoms by two bacterial antagonists of the fire blight pathogen

R. L. Nuclo; K. B. Johnson; Virginia O. Stockwell; D. Sugar

Dispersal of the bacteria Pseudomonas fluorescens strain A506 and Erwinia herbicola strain C9-1S from treated to nontreated pear blossoms, and the effect of their spread on fire blight, were investigated in an orchard block of 10 rows containing 4 trees per row. Center rows of trees were sprayed with a mixture of P. fluorescens A506 and E. herbicola C9-1S at 30, 15, and 50% bloom in 1994, 1995, and 1996, respectively. Immediately after spraying, antagonists were detected only on treated blossoms. In 1994 and 1996, as bloom progressed, both P. fluorescens A506 and E. herbicola C9-1S were detected on nontreated blossoms located up to 4 rows (10 m) from the treated rows. In 1995, establishment of the antagonists on treated blossoms was poor and spread to nontreated trees was limited, apparently because of cold temperatures. Each year, honey bees were used to inoculate all trees with E. amylovora at 80% bloom. After full bloom in 1994 and 1996, the proportion of blossoms with E. amylovora populations >105 CFU per flower were highest in the outermost rows, and decreased linearly (P < 0.05) with proximity to treated rows. In 1994, diseased blossom clusters decreased significantly (P < 0.05) from the outermost rows to the treated rows, but there was no significant effect of distance on disease incidence in 1995 or 1996. Secondary colonization of blossoms by P. fluorescens A506 and E. herbicola C9-1S can play a role in disease suppression, but, among seasons, rates of secondary colonization by P. fluorescens A506 and E. herbicola C9-1S were variable, indicating that multiple applications of antagonists may be necessary to optimize biological control.


Phytopathology | 2011

Mechanistically Compatible Mixtures of Bacterial Antagonists Improve Biological Control of Fire Blight of Pear

Virginia O. Stockwell; K. B. Johnson; D. Sugar; Joyce E. Loper

Mixtures of biological control agents can be superior to individual agents in suppressing plant disease, providing enhanced efficacy and reliability from field to field relative to single biocontrol strains. Nonetheless, the efficacy of combinations of Pseudomonas fluorescens A506, a commercial biological control agent for fire blight of pear, and Pantoea vagans strain C9-1 or Pantoea agglomerans strain Eh252 rarely exceeds that of individual strains. A506 suppresses growth of the pathogen on floral colonization and infection sites through preemptive exclusion. C9-1 and Eh252 produce peptide antibiotics that contribute to disease control. In culture, A506 produces an extracellular protease that degrades the peptide antibiotics of C9-1 and Eh252. We hypothesized that strain A506 diminishes the biological control activity of C9-1 and Eh252, thereby reducing the efficacy of biocontrol mixtures. This hypothesis was tested in five replicated field trials comparing biological control of fire blight using strain A506 and A506 aprX::Tn5, an extracellular protease-deficient mutant, as individuals and combined with C9-1 or Eh252. On average, mixtures containing A506 aprX::Tn5 were superior to those containing the wild-type strain, confirming that the extracellular protease of A506 diminished the biological control activity of C9-1 and Eh252 in situ. Mixtures of A506 aprX::Tn5 and C9-1 or Eh252 were superior to oxytetracycline or single biocontrol strains in suppressing fire blight of pear. These experiments demonstrate that certain biological control agents are mechanistically incompatible, in that one strain interferes with the mechanism by which a second strain suppresses plant disease. Mixtures composed of mechanistically compatible strains of biological control agents can suppress disease more effectively than individual biological control agents.


Phytopathology | 2010

Control of Fire Blight by Pseudomonas fluorescens A506 and Pantoea vagans C9-1 Applied as Single Strains and Mixed Inocula

Virginia O. Stockwell; K. B. Johnson; D. Sugar; Joyce E. Loper

The biological control agents Pseudomonas fluorescens A506 and Pantoea vagans C9-1 were evaluated individually and in combination for the suppression of fire blight of pear or apple in 10 field trials inoculated with the pathogen Erwinia amylovora. The formulation of pathogen inoculum applied to blossoms influenced establishment of the pathogen and the efficacy of biological control. Pantoea vagans C9-1 suppressed fire blight in all five trials in which the pathogen was applied as lyophilized cells but in none of the trials in which the pathogen was applied as freshly harvested cells. In contrast, Pseudomonas fluorescens A506 reduced disease significantly in only one trial. A mixture of the two strains also suppressed fire blight, but the magnitude of disease suppression over all field trials (averaging 32%) was less than that attained by C9-1 alone (42%). The two biological control agents did not antagonize one another on blossom surfaces, and application of the mixture of A506 and C9-1 to blossoms resulted in a greater proportion of flowers having detectable populations of at least one bacterial antagonist than the application of individual strains. Therefore, the mixture of A506 and C9-1 provided less disease control than expected based upon the epiphytic population sizes of the antagonists on blossom surfaces. We speculate that the biocontrol mixture was less effective than anticipated due to incompatibility between the mechanisms by which A506 and C9-1 suppress disease.


Phytopathology | 2005

Biological Control Efficiency of Fusarium Wilt of Tomato by Nonpathogenic Fusarium oxysporum Fo-B2 in Different Environments.

Masahiro Shishido; Chika Miwa; Toshiyuki Usami; Yoshimiki Amemiya; K. B. Johnson

ABSTRACT Efficiency of nonpathogenic Fusarium oxysporum Fo-B2 for the biological control of Fusarium wilt of tomato, caused by F. oxysporum f. sp. lycopersici CU1, was examined in different environments: a growth chamber with sterile soil-less medium, a greenhouse with fumigated or nonfumigated soil, and nonfumigated field plots. Inoculation of Fo-B2 onto tomato roots significantly reduced the severity of disease, but the efficiency of disease suppression decreased as the experimental environment became less controlled. Relationships between the recovery of Fo-B2 from hypocotyls and the disease severity indicated that the biocontrol agent was most effective when it colonized vascular tissues intensively. Moreover, the degree of Fo-B2 colonization was greatly reduced when the seedlings were grown in nonfumigated soil. Dose-response models (negative exponential, hyperbolic saturation, and logistic) were fit to observed data collected over a range of inoculum densities of the pathogen and the antagonist; the logistic model provided the best fit in all environments. The ratios of an 50% effective dose parameter for Fo-B2 to that of CU1 increased as the environment became less controlled, suggesting that environmentally related efficiency reduction impacted the antagonist more than the pathogen. The results suggest that indigenous soil microbes were a primary factor negatively influencing the efficiency of Fo-B2. Therefore, early establishment of the antagonist in a noncompetitive environment prior to outplanting could improve the efficacy of biological control.


Plant Disease | 2011

Evaluation of Loop-Mediated Isothermal Amplification for Rapid Detection of Erwinia amylovora on Pear and Apple Fruit Flowers

Todd N. Temple; K. B. Johnson

Fire blight of pear and apple is frequently an inoculum-limited disease but weather-based forecasting models commonly assume that the pathogen is omnipresent. To improve fire blight risk assessment during flowering, we developed a rapid pathogen detection protocol that uses loop-mediated isothermal amplification (LAMP) to detect DNA of epiphytic Erwinia amylovora on samples of pear and apple flowers. LAMP detected a single flower colonized epiphytically by E. amylovora in a sample of 100 flower clusters (approximately 600 flowers). Samples of 100 flower clusters from orchards (approximately one sample per hectare) were washed and subjected to LAMP, which was completed in 2 h. In three experimental orchards inoculated with E. amylovora, positive LAMP reactions were attained from nine of nine 100-flower cluster samples; pathogen populations in the floral washes averaged 5.2 × 103 CFU per flower as determined by dilution plating. Samples of pear and apple flowers obtained from 60 commercial orchards located in Oregon, Washington, California, and Utah resulted in detection of E. amylovora by LAMP assay from 34 sites, 20 of which developed fire blight. Of samples at early bloom, 10% were positive for epiphytic E. amylovora compared with 28% at petal fall; pathogen density in washes of positive samples averaged 3.2 × 102 CFU per flower. In another 26 orchards, all floral washes were negative for E. amylovora by LAMP and by dilution plating; a light severity of fire blight was observed in 8 of these orchards. Overall, positive detection of epiphytic E. amylovora in commercial orchards by LAMP-based scouting generally occurred at later stages of bloom after heat (risk) units had begun to accumulate, an indication that weather-based forecasting models may be an adequate measure of fire blight risk for many orchardists. Nonetheless, several orchardists communicated that information from the LAMP-based rapid detection protocol resulted in modification of their fire blight management practices.


Annual Review of Phytopathology | 2010

Pathogen Refuge: A Key to Understanding Biological Control

K. B. Johnson

Pathogen refuge is the idea that some potentially infectious pathogen propagules are not susceptible to the influence of an antagonistic microbial agent. The existence of a refuge can be attributable to one or more factors, including temporal, spatial, structural, and probabilistic, or to the pathogens evolved ability to acquire antagonist-free space prior to ingress into a plant host. Within a specific pathosystem, refuge size can be estimated in experiments by measuring the proportion of pathogen propagules that remain infective as a function of the amount of antagonist introduced to the system. Refuge size is influenced by qualities of specific antagonists and by environment but less so by the quantity of antagonist. Consequently, most efforts to improve and optimize biological control are in essence efforts to reduce refuge size. Antagonist mixtures, optimal timing of antagonist introductions, integrated biological and chemical control, environmental optimization, and the utilization of disarmed pathogens as antagonists are strategies with potential to minimize a pathogen refuge.


Phytopathology | 2009

Implications of Pathogenesis by Erwinia amylovora on Rosaceous Stigmas to Biological Control of Fire Blight

K. B. Johnson; T. L. Sawyer; Virginia O. Stockwell; Todd N. Temple

As a prerequisite to infection of flowers, Erwinia amylovora grows epiphytically on stigmas, which provide a conducive habitat for bacterial growth. Stigmas also support growth of several other bacterial genera, which allows for biological control of fire blight; although, in practice, it is very difficult to exclude E. amylovora completely from this habitat. We investigated the dynamics of growth suppression of E. amylovora by comparing the ability of virulent and avirulent strains of E. amylovora to compete with each other on stigmas of pear, apple, and blackberry, and to compete with a co-inoculated mixture of effective bacterial antagonists. When strains were inoculated individually, virulent E. amylovora strain Ea153N attained the highest population size on stigmas, with population sizes that were approximately double those of an avirulent hrpL mutant of Ea153 or the bacterial antagonists. In competition experiments, growth of the avirulent derivative was suppressed by the antagonist mixture to a greater extent than the virulent strain. Unexpectedly, the virulent strain enhanced the population size of the antagonist mixture. Similarly, a small dose of virulent Ea153N added to inoculum of an avirulent hrpL mutant of Ea153 significantly increased the population size of the avirulent strain. A pathogenesis-gene reporter strain, Ea153 dspE::gfp, was applied to flowers and a subset of the population expressed the green fluorescent protein while growing epiphytically on stigmas of apple. These results are consistent with the hypothesis that virulent E. amylovora modifies the epiphytic habitat presented by the stigma through a pathogenesis-related process, which increases host resources available to itself and, coincidentally, to nonpathogenic competitors. Over nine orchard trials, avirulent Ea153 hrpL significantly suppressed the incidence of fire blight four times compared with six for the antagonist mixture. The degree of biological control achievable with an avirulent strain of E. amylovora likely is limited by its inability to utilize the stigmatic habitat to the same degree as a virulent strain.


Plant Disease | 2013

Evaluation of Strategies for Fire Blight Control in Organic Pome Fruit Without Antibiotics

K. B. Johnson; Todd N. Temple

Apple and pear produced organically under the U.S. National Organic Program (NOP) standard can be treated with antibiotics for suppression of fire blight caused by Erwinia amylovora. Recent regulatory actions by the NOP, however, have lessened the likelihood of antibiotic use after the 2014 season. In response, western U.S. organic apple and pear stakeholders identified two immediate-need research objectives related to fire blight control: development of effective non-antibiotic control programs based on combinations of registered biological products; and, in apple, integration of these products with lime sulfur, which is sprayed at early bloom to reduce fruit load. In orchard trials in Oregon, increasing the frequency of treatment with biological products improved suppression of floral infection. In apple, fruit load thinning with 2% lime sulfur plus 2% fish oil (LS+FO) at 30 and 70% bloom significantly (P ≤ 0.05) reduced the proportion of blighted flower clusters in four of five orchard trials. Moreover, lime sulfur significantly (P ≤ 0.05) suppressed epiphytic populations of E. amylovora after their establishment on apple flowers. Over four trials, treatment with Aureobasidium pullulans (Blossom Protect) after LS+FO reduced the incidence of fire blight by an average of 92% compared with water only; this level of control was similar to treatment with streptomycin. In three seasons, a spray of a Pantoea agglomerans product after the 70% bloom treatment of LS+FO established the antagonist on a significantly (P ≤ 0.05) higher proportion of flowers compared with a spray of this bacterium before the thinning treatment. Consequently, in apple, biological treatments for fire blight control are not advised until after lime sulfur treatments for fruit load thinning are completed.

Collaboration


Dive into the K. B. Johnson's collaboration.

Top Co-Authors

Avatar

Virginia O. Stockwell

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. G. Stone

Oregon State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lyndon D. Porter

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Nnadozie Oraguzie

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Cheryl A. Whistler

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar

E. Gutierrez

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge