Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where K.C. Bal Krishna is active.

Publication


Featured researches published by K.C. Bal Krishna.


Chemosphere | 2016

Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: A review.

Shanti Lamichhane; K.C. Bal Krishna; Ranjan Sarukkalige

Polycyclic aromatic hydrocarbons (PAHs) are organic micro pollutants which are persistent compounds in the environment due to their hydrophobic nature. Concerns over their adverse effects in human health and environment have resulted in extensive studies on various types of PAHs removal methods. Sorption is one of the widely used methods as PAHs possess a great sorptive ability into the solid media and their low aqueous solubility property. Several adsorbent media such as activated carbon, biochar, modified clay minerals have been largely used to remove PAHs from aqueous solution and to immobilise PAHs in the contaminated soils. According to the past studies, very high removal efficiency could be achieved using the adsorbents such as removal efficiency of activated carbon, biochar and modified clay mineral were 100%, 98.6% and >99%, respectively. PAHs removal efficiency or adsorption/absorption capacity largely depends on several parameters such as particle size of the adsorbent, pH, temperature, solubility, salinity including the production process of adsorbents. Although many studies have been carried out to remove PAHs using the sorption process, the findings have not been consolidated which potentially hinder to get the correct information for future study and to design the sorption method to remove PAHs. Therefore, this paper summarized the adsorbent media which have been used to remove PAHs especially from aqueous solutions including the factor affecting the sorption process reported in 142 literature published between 1934 and 2015.


Water Research | 2012

Evidence of soluble microbial products accelerating chloramine decay in nitrifying bulk water samples

K.C. Bal Krishna; Arumugam Sathasivan; Dipok Chandra Sarker

The discovery of a microbially derived soluble product that accelerates chloramine decay is described. Nitrifying bacteria are believed to be wholly responsible for rapid chloramine loss in drinking water systems. However, a recent investigation showed that an unidentified soluble agent significantly accelerated chloramine decay. The agent was suspected to be either natural organic matter (NOM) or soluble microbial products (SMPs). A laboratory scale reactor was fed chloraminated reverse osmosis (RO) treated water to eliminate the interference from NOM. Once nitrification had set in, experiments were conducted on the reactor and feed waters to determine the identity of the component. The study showed the presence of SMPs released by microbes in severely nitrified waters. Further experiments proved that the SMPs significantly accelerated chloramine decay, probably through catalytic reaction. Moreover, application of common protein denaturing techniques stopped the reaction implying that the compound responsible was likely to be a protein. This significant finding will pave the way for better control of chloramine in the distribution systems.


Journal of Environmental Management | 2017

Surfactant-enhanced remediation of polycyclic aromatic hydrocarbons: A review

Shanti Lamichhane; K.C. Bal Krishna; Ranjan Sarukkalige

Polycyclic aromatic hydrocarbons (PAHs) are toxic, mutagenic and carcinogenic organic compounds that are widely present in the environment. The bioremediation of PAHs is an economical and environmentally friendly remediation technique, but it is limited because PAHs have low water solubility and fewer bioavailable properties. The solubility and bioavailability of PAHs can be increased by using surfactants to reduce surface tension and interfacial tension; this method is called surfactant-enhanced remediation (SER). The SER of PAHs is influenced by many factors such as the type and concentration of surfactants, PAH hydrophobicity, temperature, pH, salinity, dissolved organic matter and microbial community. Furthermore, as mixed micelles have a synergistic effect on PAH solubilisation, selecting the optimum ratio of mixed surfactants leads to effective PAH remediation. Although the use of surfactants inhibits microbial activities in some cases, this could be avoided by choosing an optimum combination of surfactants and a proper microbial community for the targeted PAH(s), resulting in up to 99.99% PAH removal. This article reviews the literature on SER of PAHs, including surfactant types, the synergistic effect of mixed micelles on PAH removal, the impact of surfactants on the PAH biodegradation process, factors affecting the SER process, and the mechanisms of surfactant-enhanced solubilisation of PAHs.


Bioresource Technology | 2011

Expediting COD removal in microbial electrolysis cells by increasing biomass concentration.

Hanieh Aboutalebi; Arumugam Sathasivan; K.C. Bal Krishna; Ahmad Jabari Kohpaei

Microorganisms catalyse the reaction and in this study, mainly the effect of different concentration of biomass on COD removal was investigated. Three sets of two-compartment reactors were established. The cation exchange membrane (CEM) was employed in each reactor and 0.5 V of electricity was supplied. Graphite rod employed in cathodic part and a combination of graphite rod and graphite granules were used in anodic chamber. The highest rate of COD removal (40 ± 2.0 ppm/h) was achieved in the reactor which had initial VSS at 6130 mg/l, whereas the slowest rate of 23 ± 1.2 ppm/h in the reactor started with 3365 mgVSS/l. Some ammonia removal was also noticed during the operation. Further understanding and improvement is needed to be competitive against traditional wastewater treatment processes.


Water Research | 2010

Development and application of a method for quantifying factors affecting chloramine decay in service reservoirs

Arumugam Sathasivan; K.C. Bal Krishna; Ian Fisher

Service reservoirs play an important role in maintaining water quality in distribution systems. Several factors affect the reservoir water quality, including bulk water reactions, stratification, sediment accumulation and wall reactions. It is generally thought that biofilm and sediments can harbour microorganisms, especially in chloraminated reservoirs, but their impact on disinfectant loss on disinfectant loss has not been quantified. Hence, debate exists as to the extent of the problem. To quantify the impact, the reservoir acceleration factor (F(Ra)) is defined. This factor represents the acceleration of chloramine decay arising from all causes, including changes in retention time, assuming that the reservoir is completely mixed. Such an approach quantifies the impact of factors, other than chemical reactions, in the bulk water. Data from three full-scale chloraminated service reservoirs in distribution systems of Sydney, Australia, were analysed to demonstrate the generality of the method. Results showed that in two large service reservoirs (404 x 10(3) m(3) and 82 x 10(3) m(3)) there was minimal impact from biofilm/sediment. However, in a small reservoir (3 x 10(3) m(3)), the biofilm/sediment had significant impact. In both small and large reservoirs, the effect of stratification was significant.


Desalination and Water Treatment | 2012

Major mechanism(s) of chloramine decay in rechloraminated laboratory scale system waters

Arumugam Sathasivan; K.C. Bal Krishna

abstract Traditionally it is believed that nitrification was solely responsible for the widely observed chloramine loss under nitrifying conditions. On the contrary, recent results have shown that an unidentified agent (soluble microbial products or modified natural organic matter) chemically accelerates chloramine decay in rechloraminated nitrifying samples which were filtered to eliminate microbes. However, how those agents accelerate chloramine decay is not known. Mildly and severely nitrified samples were collected from a laboratory scale system and microbes were separated through filtration and then rechloraminated. To understand the mechanism, simple stoichiometry was employed. In all samples, rechloramination induced ammonia loss possibly by auto-decomposition, especially in the initial stages. In severely nitrified samples, accelerated auto-decomposition and nitrite oxidation were found to be the major mechanisms chemically accelerating the chloramine loss indicating that the agent did not demand ...


Journal of Environmental Management | 2016

Comparative study of ground water treatment plants sludges to remove phosphorous from wastewater.

K.C. Bal Krishna; Ashok Aryal; Troy Jansen

Alum- and iron-based sludge obtained from water treatment plant produced during a unit treatment process (coagulation and flocculation) have been widely tested as a low-cost adsorbent to remove phosphorous (P) from wastewater. However, the effectiveness of iron-based sludge generated from the oxidation of iron which naturally occurs in the ground water has not been investigated. Moreover, influences of dominant metals ions comprised in the treatment plants sludges on P adsorption capacity and rate from wastewater are not yet known. This study, therefore, employed four different groundwater treatment plants sludges iron-based (from the oxidation of iron) and alum-based (from coagulation and flocculation process) to determine their P adsorption capacities and adsorption rates from the synthetic wastewater (SWW) and secondary effluent wastewater (SEWW). Although metals ions concentrations were the highest in the iron-based sludge amongst the sludge used in this study, it appeared to have the lowest P adsorption capacity and adsorption rate. A good correlation between aluminium to iron mass ratio and adsorption capacity for both types of waters were noted. However, a poor relation between aluminium to iron mass ratio and adsorption rates for the SEWW was observed. Further, the tested sludges were found to have a better P removal efficiency and adsorption capacity from the SEWW than from the SWW. Thus, this study demonstrates the ground water treatment plants sludges could be a low cost and effective adsorbent in removing P from wastewater.


Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2009

Investigation on laboratory and pilot-scale airlift sulfide oxidation reactor under varying sulfide loading rate.

Chanya Pokasoowan; Wilawan Kanitchaidecha; K.C. Bal Krishna; Ajit P. Annachhatre

Airlift bioreactor was established for recovering sulfur from synthetic sulfide wastewater under controlled dissolved oxygen condition. The maximum recovered sulfur was 14.49 g/day when sulfide loading rate, dissolved oxygen (DO) and pH values were 2.97 kgHS−/m3-day, 0.2–1.0 mg/L and 7.2–7.8, respectively. On the other hand, the increase in recovered sulfur reduced the contact surface of sulfide oxidizing bacteria which affects the recovery process. This effect caused to reduce the conversion of sulfide to sulfur. More recovered sulfur was produced at high sulfide loading rate due to the change of metabolic pathway of sulfide-oxidizing bacteria which prevented the toxicity of sulfide in the culture. The maximum activity in this system was recorded to be about 3.28 kgS/kgVSS-day. The recovered sulfur contained organic compounds which were confirmed by the results from XRD and CHN analyzer. Afterwards, by annealing the recovered sulfur at 120°C for 24 hrs under ambient Argon, the percentage of carbon reduced from 4.44% to 0.30%. Furthermore, the percentage of nitrogen and hydrogen decreased from 0.79% and 0.48% to 0.00% and 0.14%, respectively. This result showed the success in increasing the purity of recovered sulfur by using the annealing technique. The pilot-scale biological sulfide oxidation process was carried out using real wastewater from Thai Rayon Industry in Thailand. The airlift reactor successfully removed sulfide more than 90% of the influent sulfide at DO concentration of less than 0.1 mg/L, whereas the elementary sulfur production was 2.37 kgS/m3-day at sulfide loading rate of 2.14 kgHS−/m3-day. The sulfur production was still increasing as the reactor had not yet reached its maximum sulfide loading rate.


PLOS ONE | 2017

Effectiveness of Devices to Monitor Biofouling and Metals Deposition on Plumbing Materials Exposed to a Full-Scale Drinking Water Distribution System

Maneesha P. Ginige; Scott Garbin; Jason Wylie; K.C. Bal Krishna

A Modified Robbins Device (MRD) was installed in a full-scale water distribution system to investigate biofouling and metal depositions on concrete, high-density polyethylene (HDPE) and stainless steel surfaces. Bulk water monitoring and a KIWA monitor (with glass media) were used to offline monitor biofilm development on pipe wall surfaces. Results indicated that adenosine triphosphate (ATP) and metal concentrations on coupons increased with time. However, bacterial diversities decreased. There was a positive correlation between increase of ATP and metal deposition on pipe surfaces of stainless steel and HDPE and no correlation was observed on concrete and glass surfaces. The shared bacterial diversity between bulk water and MRD was less than 20% and the diversity shared between the MRD and KIWA monitor was only 10%. The bacterial diversity on biofilm of plumbing material of MRD however, did not show a significant difference suggesting a lack of influence from plumbing material during early stage of biofilm development.


Adsorption Science & Technology | 2016

Evaluation of phosphorus adsorption capacity of various filter materials from aqueous solution

Rekha Adhikari; K.C. Bal Krishna; Ranjan Sarukkalige

Rapid urbanisation has significantly increased the impervious surface along with increase in pollutants such as nutrients (nitrogen, phosphorus), sediments, oil, and hydrocarbon in stormwater. Their removal is important as they adversely affect the aquatic ecosystem and the environment. Thus, this study evaluated the performance of various adsorbent materials (red gum mulch, pine mulch, flyash, oyster shell, sawdust, clay, sand, zeolite, dolomite, alum and lime sludges) for the removal of phosphorus from synthetic stormwater. Among them, alum and lime sludges appeared to be the most effective in removing phosphorus. Further analysis showed that alum and lime sludges remove 99 and 90% phosphorus within 60 minutes from the synthetic stormwater. Therefore, this study demonstrates that the lime and alum sludges could be highly useful as a sustainable and cheap filter media for stormwater treatment systems that are enriched in phosphorus.

Collaboration


Dive into the K.C. Bal Krishna's collaboration.

Top Co-Authors

Avatar

Arumugam Sathasivan

University of Western Sydney

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maneesha P. Ginige

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna H. Kaksonen

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge