Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arumugam Sathasivan is active.

Publication


Featured researches published by Arumugam Sathasivan.


Bioresource Technology | 2012

Effect of organic loading rate on organic matter and foulant characteristics in membrane bio-reactor

M.A.H. Johir; S. Vigneswaran; Arumugam Sathasivan; Jaya Kandasamy; Chia-Yuan Chang

In this study, the influence of organic loading rate (OLR) on the performance of a membrane bio-reactor (MBR) was investigated. The MBR was operated with 6 different OLRs between 0.5 and 3.0 kg COD/m(3)d. The hydrodynamic parameters of the MBR were kept constant. The hydraulic retention time and sludge retention time were kept at 8h and 40 d respectively. From the experimental investigation, it was found that the removal efficiency of DOC, COD and NH(4)-N decreased when OLRs were increased from 0.5 to 3.0 kg COD/m(3)d. Higher OLRs of 2.75-3.0 kg COD/m(3)d resulted in a higher transmembrane pressure development. The fractionation of organic matters showed more hydrophilic substances with higher OLRs. A detailed organic matter characterization of membrane foulant, soluble microbial product and extracellular polymeric substances showed that bio-polymers type substances together with humic acid and lower molecular neutral and acids were responsible for membrane fouling.


Water Research | 2008

Onset of severe nitrification in mildly nitrifying chloraminated bulk waters and its relation to biostability

Arumugam Sathasivan; Ian Fisher; Turn Tam

Triggers of severe nitrification in distribution systems are still not clearly understood. Recently, the biostability concept was proposed to explain the chloramine residual below which signs of nitrification would be seen. To improve understanding, mildly nitrifying bulk water samples (nitrite less than 0.010mg-N/L) from Sydney Water distribution systems were incubated at constant temperatures and periodically analysed for nitrogenous compounds and total chlorine. Total ammoniacal nitrogen in the sample was between 0.25 and 0.35mg-N/L. Severe nitrification was triggered when chloramine residuals dropped below about 0.4mg/L - the critical threshold residual. In 45 such samples, the critical threshold residual was 0.2-0.65mg/L. The biostability concept was found to be useful in explaining the residual below which net growth of microorganisms begins. However, this alone could not predict the critical threshold residual. Different means of overcoming this problem are discussed. One of these is the use of the microbial decay factor method, since microbiologically assisted chloramine decay in the samples studied was found to be mostly the result of ammonia-oxidising bacterial activity. Nitrite levels in winter were found to be poor indicators of nitrifying status. Overall the results were found to be useful in controlling nitrification and to obtain early warning of severe nitrification.


Water Research | 2012

A suitable model of combined effects of temperature and initial condition on chlorine bulk decay in water distribution systems

Ian Fisher; George Kastl; Arumugam Sathasivan

Maintaining a chlorine residual is a major disinfection goal in many water distribution systems. A suitable general model of chlorine decay in the transported bulk water is an essential component for efficiently modelling chlorine concentration in distribution systems. The two-reactant model meets basic suitability criteria, including accurate prediction of chlorine residual over hundreds of hours, commencing with chlorine concentration 0-4 mg/L. This model was augmented with an equation that increases the decay coefficients with temperature according to Arrhenius theory. The augmented model was calibrated against decay-test data sets to obtain a single invariant set of parameters for each water. Model estimates of chlorine residuals over time closely matched decay-test data, over the usual operating ranges of initial chlorine concentration (1-4 mg/L) and temperature (3.5-28 °C). When the augmented model was fitted to partial data sets, it also predicted the data reserved for validation very well, suggesting that this model can accurately predict the combined effect of initial chlorine concentration and temperature on chlorine bulk decay in distribution systems, using a single set of invariant parameters for a given source water.


Chemosphere | 2017

A review: Potential and challenges of biologically activated carbon to remove natural organic matter in drinking water purification process.

Shashika Madushi Korotta-Gamage; Arumugam Sathasivan

The use of biologically activated carbon (BAC) in drinking water purification is reviewed. In the past BAC is seen mostly as a polishing treatment. However, BAC has the potential to provide solution to recent challenges faced by water utilities arising from change in natural organic matter (NOM) composition in drinking water sources - increased NOM concentration with a larger fraction of hydrophilic compounds and ever increasing trace level organic pollutants. Hydrophilic NOM is not removed by traditional coagulation process and causes bacterial regrowth and increases disinfection by-products (DBPs) formation during disinfection. BAC can offer many advantages by removing hydrophilic fraction and many toxic and endocrine compounds which are not otherwise removed. BAC can also aid the other downstream processes if used as a pre-treatment. Major drawback of BAC was longer empty bed contact time (EBCT) required for an effective NOM removal. This critical review analyses the strategies that have been adopted to enhance the biological activity of the carbon by operational means and summarises the surface modification methods. To maximize the benefit of the BAC, a rethink of current treatment plant configuration is proposed. If the process can be expedited and adopted appropriately, BAC can solve many of the current problems.


Critical Reviews in Environmental Science and Technology | 2011

Suitability of chlorine bulk decay models for planning and management of water distribution systems

Ian Fisher; George Kastl; Arumugam Sathasivan; Veeriah Jegatheesan

Effective disinfection planning and management in large, complex water distribution systems requires an accurate network water quality model. This model should be based on reaction kinetics, which describes disinfectant loss from bulk water over time, within experimental error. Models in the literature were reviewed for their ability to meet this requirement in real networks. Essential features were identified as accuracy, simplicity, computational efficiency, and ability to describe consistently the effects of initial chlorine dose, temperature variation, and successive rechlorinations. A reaction scheme of two organic constituents reacting with free chlorine was found to be necessary and sufficient to provide the required features. Recent release of the multispecies extension (MSX) to EPANET and MWH Softs H2OMap Water MSX network software enables users to implement this and other multiple-reactant bulk decay models in real system simulations.


Journal of Chromatography A | 2010

Analysis of polysulfides in drinking water distribution systems using headspace solid-phase microextraction and gas chromatography-mass spectrometry

Ina Kristiana; Anna Heitz; Cynthia Joll; Arumugam Sathasivan

Sulfide and polysulfides are strong nucleophiles and reducing agents that participate in many environmentally significant processes such as the formation of sulfide minerals and volatile organic sulfur compounds. Their presence in drinking water distribution systems are of particular concern and need to be assessed, since these species consume disinfectants and dissolved oxygen, react with metal ions to produce insoluble metal sulfides, and cause taste and odour problems. The analysis of sulfide and polysulfides in drinking water distribution systems is challenging due to their low concentrations, thermal instability and their susceptibility to undergo oxidation and disproportionation reactions. This paper reports on the development and optimisation of a rapid, simple, and sensitive method for the determination of sulfide and polysulfides in drinking water distribution systems. The method uses methyl iodide to derivatize sulfide and polysulfides into their corresponding dimethyl(poly)sulfides, which are then extracted using solid-phase microextraction in the headspace mode and analysed by gas chromatography-mass spectrometry. Good sensitivity was achieved for the analysis of dimethyl(poly)sulfides, with detection limits ranging from 50 to 240 ng L(-1). The method also demonstrated good precision (repeatability: 3-7%) and good linearity over two orders of magnitude. Matrix effects from raw drinking water containing organic carbon (3.8 mg L(-1)) and from sediment material from a drinking water distribution system were shown to have no interferences in the analysis of dimethyl(poly)sulfides. The method provides a rapid, robust, and reliable mean to analyse trace levels of sulfides and polysulfides in aqueous systems. The new method described here is more accessible and user-friendly than methods based on closed-loop stripping analysis, which have been traditionally used for the analysis of these compounds. The optimised method was used to analyse samples collected from various locations in a drinking water distribution system. Some of the samples were shown to contain inorganic polysulfides, and their presence was associated with high sediment density in the system and the absence of disinfectant residual in the bulk water.


Water Research | 2015

Combined BAC and MIEX pre-treatment of secondary wastewater effluent to reduce fouling of nanofiltration membranes

Ashok Aryal; Arumugam Sathasivan; Anna Heitz; Gang Zheng; Hamid Nikraz; Maneesha P. Ginige

Biological activated carbon (BAC) and magnetic ion exchange resin (MIEX) were used to pre-treat secondary wastewater effluent (SWWE) and assessed for their capacity to reduce fouling of a nanofiltration membrane. BAC pre-treated water facilitated a lower but a steady flux while MIEX treated water resulted in a higher but a rapidly declining flux. Their combined use increased average flux from 58 to 89%. MIEX combined with BAC, in that order, was superior in reducing membrane fouling. Measurement of average Stokes radius (m) and apparent molecular weight distribution of dissolved organic matter (DOM), by nuclear magnetic resonance (NMR) and liquid chromatography organic carbon detection (LC-OCD), respectively, revealed that the microbial activity of BAC changed the nature of organic matter, probably by increasing the size of DOM molecules. BAC generally decreased the lower apparent molecular weight (LMW) fraction of dissolved organic carbon (DOC). Hence, the removal of LMW DOC and an increase of average Stokes radius (m) of DOM appeared to be important in facilitating a longer steady flux. Specifically, the combined MIEX/BAC pre-treatments appeared to target and reduce the foulants in SWWE that are largely responsible for the reduction of flux in nanofiltration membranes.


Water Research | 2012

Evidence of soluble microbial products accelerating chloramine decay in nitrifying bulk water samples

K.C. Bal Krishna; Arumugam Sathasivan; Dipok Chandra Sarker

The discovery of a microbially derived soluble product that accelerates chloramine decay is described. Nitrifying bacteria are believed to be wholly responsible for rapid chloramine loss in drinking water systems. However, a recent investigation showed that an unidentified soluble agent significantly accelerated chloramine decay. The agent was suspected to be either natural organic matter (NOM) or soluble microbial products (SMPs). A laboratory scale reactor was fed chloraminated reverse osmosis (RO) treated water to eliminate the interference from NOM. Once nitrification had set in, experiments were conducted on the reactor and feed waters to determine the identity of the component. The study showed the presence of SMPs released by microbes in severely nitrified waters. Further experiments proved that the SMPs significantly accelerated chloramine decay, probably through catalytic reaction. Moreover, application of common protein denaturing techniques stopped the reaction implying that the compound responsible was likely to be a protein. This significant finding will pave the way for better control of chloramine in the distribution systems.


Bioresource Technology | 2012

Effect of imposed flux on fouling behavior in high rate membrane bioreactor

M.A.H. Johir; Joshy George; S. Vigneswaran; Jaya Kandasamy; Arumugam Sathasivan; Alain Grasmick

The influence of imposed flux and aeration rates on membrane fouling in a submerged membrane bioreactor was studied. The experiments were conducted at four imposed fluxes and three aeration rates. The effect of flux on the reduction of membrane fouling was much higher than that caused by aeration rate. A lower flux of 20 L/m(2) h produced 75 times more water than a higher flux of 40 L/m(2) h with an aeration rate of 2 L/min. Low flux showed slightly higher removal of NH(4)-N and 93-96% removal of dissolved organic matter and chemical oxygen demand. Imposed flux also had a significant effect on the composition of organics present in the soluble microbial product (SMP) and extracellular polymeric substances (EPS). At a higher flux, both SMP and EPS had organics of high molecular weight (MW) of around 48 kDa as well as lower MW organics below 200 Da.


Chemosphere | 2014

Experimental investigation and modeling of dissolved organic carbon removal by coagulation from seawater

Sanghyun Jeong; Arumugam Sathasivan; George Kastl; Wang Geun Shim; S. Vigneswaran

Coagulation removes colloidal matters and dissolved organic carbon (DOC) which can cause irreversible membrane fouling. However, how DOC is removed by coagulant is not well-known. Jar test was used to study the removal of hydrophobic and hydrophilic DOC fractions at various doses (0.5-8.0 mg-Fe(+3) L(-1)) of ferric chloride (FeCl3) and pH (5.0-9.0). Natural organic matter (NOM) in seawater and treated seawater were fractionated by liquid chromatography-organic carbon detector (LC-OCD). Compared to surface water, the removal of DOC in seawater by coagulation was remarkably different. Majority of DOC could be easily removed with very low coagulant dose (<5.0 mg-Fe(+3) L(-1)) and the removal efficiency did not vary with pH, but the DOC composition in treated water had significantly changed. Hydrophobic fraction (HB) was better removed at high pH while hydrophilic fraction (HF) was better removed at low pH. A modified model of Kastl et al. (2004) which assumed that the removal occurred by adsorption of un-dissociated compounds onto ferric hydroxide was formulated and successfully validated against the jar test data.

Collaboration


Dive into the Arumugam Sathasivan's collaboration.

Top Co-Authors

Avatar

George Kastl

University of Western Sydney

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge