K. Cerully
Georgia Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by K. Cerully.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Lu Xu; Hongyu Guo; Christopher M. Boyd; Mitchel Klein; A. Bougiatioti; K. Cerully; James Ricky Hite; Gabriel Isaacman-VanWertz; Nathan M. Kreisberg; Christoph Knote; Kevin Olson; Abigail Koss; Allen H. Goldstein; Susanne V. Hering; Joost A. de Gouw; Karsten Baumann; Shan-Hu Lee; Athanasios Nenes; Rodney J. Weber; Nga L. Ng
Significance Atmospheric secondary organic aerosol has substantial impacts on climate, air quality, and human health. However, the formation mechanisms of secondary organic aerosol remain uncertain, especially on how anthropogenic pollutants (from human activities) control aerosol formation from biogenic volatile organic compounds (emitted by vegetation) and the magnitude of anthropogenic influences. Although possible mechanisms have been proposed based on laboratories studies, a coherent understanding of anthropogenic−biogenic interactions in ambient environments has not emerged. Here, we provide direct observational evidence that secondary organic aerosol formed from biogenic isoprene and monoterpenes is greatly mediated by anthropogenic SO2 and NOx emissions based on integrated ambient measurements and laboratory studies. Secondary organic aerosol (SOA) constitutes a substantial fraction of fine particulate matter and has important impacts on climate and human health. The extent to which human activities alter SOA formation from biogenic emissions in the atmosphere is largely undetermined. Here, we present direct observational evidence on the magnitude of anthropogenic influence on biogenic SOA formation based on comprehensive ambient measurements in the southeastern United States (US). Multiple high-time-resolution mass spectrometry organic aerosol measurements were made during different seasons at various locations, including urban and rural sites in the greater Atlanta area and Centreville in rural Alabama. Our results provide a quantitative understanding of the roles of anthropogenic SO2 and NOx in ambient SOA formation. We show that isoprene-derived SOA is directly mediated by the abundance of sulfate, instead of the particle water content and/or particle acidity as suggested by prior laboratory studies. Anthropogenic NOx is shown to enhance nighttime SOA formation via nitrate radical oxidation of monoterpenes, resulting in the formation of condensable organic nitrates. Together, anthropogenic sulfate and NOx can mediate 43–70% of total measured organic aerosol (29–49% of submicron particulate matter, PM1) in the southeastern US during summer. These measurements imply that future reduction in SO2 and NOx emissions can considerably reduce the SOA burden in the southeastern US. Updating current modeling frameworks with these observational constraints will also lead to more accurate treatment of aerosol formation for regions with substantial anthropogenic−biogenic interactions and consequently improve air quality and climate simulations.
Environmental Science & Technology | 2011
D. A. Lack; Christopher D. Cappa; Justin M. Langridge; Roya Bahreini; Gina Buffaloe; C. A. Brock; K. Cerully; D. J. Coffman; Katherine Hayden; John S. Holloway; Paola Massoli; Shao-Meng Li; Robert McLaren; Ann M. Middlebrook; R. H. Moore; Athanasios Nenes; I. Nuaaman; Timothy B. Onasch; J. Peischl; A. E. Perring; Patricia K. Quinn; T. B. Ryerson; Joshua P. Schwartz; Ryan Spackman; Steven C. Wofsy; D. R. Worsnop; B. Xiang; Eric Williams
Atmospheric emissions of gas and particulate matter from a large ocean-going container vessel were sampled as it slowed and switched from high-sulfur to low-sulfur fuel as it transited into regulated coastal waters of California. Reduction in emission factors (EFs) of sulfur dioxide (SO₂), particulate matter, particulate sulfate and cloud condensation nuclei were substantial (≥ 90%). EFs for particulate organic matter decreased by 70%. Black carbon (BC) EFs were reduced by 41%. When the measured emission reductions, brought about by compliance with the California fuel quality regulation and participation in the vessel speed reduction (VSR) program, are placed in a broader context, warming from reductions in the indirect effect of SO₄ would dominate any radiative changes due to the emissions changes. Within regulated waters absolute emission reductions exceed 88% for almost all measured gas and particle phase species. The analysis presented provides direct estimations of the emissions reductions that can be realized by California fuel quality regulation and VSR program, in addition to providing new information relevant to potential health and climate impact of reduced fuel sulfur content, fuel quality and vessel speed reductions.
Proceedings of the National Academy of Sciences of the United States of America | 2013
T. Raatikainen; Athanasios Nenes; John H. Seinfeld; Ricardo Morales; R. H. Moore; T. L. Lathem; Sara Lance; Luz T. Padró; Jack J. Lin; K. Cerully; A. Bougiatioti; J. Cozic; Christopher R. Ruehl; Patrick Y. Chuang; Bruce E. Anderson; Haflidi H. Jonsson; Nikos Mihalopoulos; James N. Smith
Cloud droplet formation depends on the condensation of water vapor on ambient aerosols, the rate of which is strongly affected by the kinetics of water uptake as expressed by the condensation (or mass accommodation) coefficient, αc. Estimates of αc for droplet growth from activation of ambient particles vary considerably and represent a critical source of uncertainty in estimates of global cloud droplet distributions and the aerosol indirect forcing of climate. We present an analysis of 10 globally relevant data sets of cloud condensation nuclei to constrain the value of αc for ambient aerosol. We find that rapid activation kinetics (αc > 0.1) is uniformly prevalent. This finding resolves a long-standing issue in cloud physics, as the uncertainty in water vapor accommodation on droplets is considerably less than previously thought.
Geophysical Research Letters | 2017
Narges Rastak; Aki Pajunoja; J. C. Acosta Navarro; J. Ma; Mijung Song; Daniel G. Partridge; A. Kirkevåg; Y. Leong; Weiwei Hu; Nathan Taylor; Andrew T. Lambe; K. Cerully; A. Bougiatioti; Pengfei Liu; Radovan Krejci; Tuukka Petäjä; Carl J. Percival; P. Davidovits; D. R. Worsnop; Annica M. L. Ekman; Athanasios Nenes; S. Martin; Jose L. Jimenez; Don R. Collins; David Topping; Allan K. Bertram; Andreas Zuend; Annele Virtanen; Ilona Riipinen
Abstract A large fraction of atmospheric organic aerosol (OA) originates from natural emissions that are oxidized in the atmosphere to form secondary organic aerosol (SOA). Isoprene (IP) and monoterpenes (MT) are the most important precursors of SOA originating from forests. The climate impacts from OA are currently estimated through parameterizations of water uptake that drastically simplify the complexity of OA. We combine laboratory experiments, thermodynamic modeling, field observations, and climate modeling to (1) explain the molecular mechanisms behind RH‐dependent SOA water‐uptake with solubility and phase separation; (2) show that laboratory data on IP‐ and MT‐SOA hygroscopicity are representative of ambient data with corresponding OA source profiles; and (3) demonstrate the sensitivity of the modeled aerosol climate effect to assumed OA water affinity. We conclude that the commonly used single‐parameter hygroscopicity framework can introduce significant error when quantifying the climate effects of organic aerosol. The results highlight the need for better constraints on the overall global OA mass loadings and its molecular composition, including currently underexplored anthropogenic and marine OA sources.
Aerosol Science and Technology | 2014
T. Raatikainen; Jack J. Lin; K. Cerully; T. L. Lathem; R. H. Moore; Athanasios Nenes
We have developed a new numerical model for the non-steady-state operation of the Droplet Measurement Technologies (DMT) Cloud Condensation Nuclei (CCN) counter. The model simulates the Scanning Flow CCN Analysis (SFCA) instrument mode, where a wide supersaturation range is continuously scanned by cycling the flow rate over 20–120 s. Model accuracy is verified using a broad set of data which include ammonium sulfate calibration data (under conditions of low CCN concentration) and airborne measurements where either the instrument pressure was not controlled or where exceptionally high CCN loadings were observed. It is shown here for the first time that small pressure and flow fluctuations can have a disproportionately large effect on the instrument supersaturation due to localized compressive/expansive heating and cooling. The model shows that, for fast scan times, these effects can explain the observed shape of the SFCA supersaturation-flow calibration curve and transients in the outlet droplet sizes. The extent of supersaturation depletion from the presence of CCN during SFCA operation is also examined; we found that depletion effects can be neglected below 4000 cm−3 for CCN number. Copyright 2014 American Association for Aerosol Research
Aerosol Science and Technology | 2014
K. Cerully; James R. Hite; Molly McLaughlin; Athanasios Nenes
This work presents the development and characterization of a thermodenuder for the study and interpretation of aerosol volatility. Thermodenuder measurements are further combined with a continuous-flow streamwise thermal gradient CCN counter to obtain the corresponding aerosol hygroscopicity. The thermodenuder response function is characterized with monodisperse aerosol of variable volatility and hygroscopicity. The measurements are then interpreted with a comprehensive instrument model embedded within an optimization framework to retrieve aerosol properties with constrained uncertainty. Special attention is given to the interpretation of the size distribution of the thermodenuded aerosol, deconvoluting the effects of impurities and multiple charging, and to simplifications on the treatment of thermodenuder geometry, temperature, the cooling section, and the effects of curvature and accommodation coefficient on inferred particle volatility. Retrieved vapor pressures are consistent with published literature and shown to be most sensitive to uncertainty in the accommodation coefficient. Copyright 2014 American Association for Aerosol Research
NUCLEATION AND ATMOSPHERIC AEROSOLS: 19th International Conference | 2013
T. Raatikainen; Athanasios Nenes; John H. Seinfeld; Ricardo Morales; R. H. Moore; T. L. Lathem; S. Lance; Luz T. Padró; Jack J. Lin; K. Cerully; A. Bougiatioti; J. Cozic; Christopher R. Ruehl; Patrick Y. Chuang; Bruce E. Anderson; Haflidi H. Jonsson; Nikos Mihalopoulos; James N. Smith
Cloud droplet formation depends on the condensation of water vapor on ambient aerosols, the rate of which is strongly affected by the condensation (or mass accommodation) coefficient, αc. Estimates of αc for droplet growth from activation of ambient particles vary considerably and represent a critical source of uncertainty in estimates of global cloud droplet distributions and the aerosol indirect forcing of climate. An analysis of ten globally relevant data sets of cloud condensation nuclei is used to constrain αc, and find that rapid activation kinetics (αc > 0.1) is uniformly prevalent. This means that uncertainty in water vapor accommodation on droplets is less than previously thought and resolves a long-standing issue in cloud physics.
Atmospheric Chemistry and Physics | 2014
Hongyu Guo; Lu Xu; A. Bougiatioti; K. Cerully; Shannon L. Capps; James Ricky Hite; Annmarie G. Carlton; Shan-Hu Lee; Michael H. Bergin; Nga L. Ng; Athanasios Nenes; Rodney J. Weber
Atmospheric Chemistry and Physics | 2011
K. Cerully; T. Raatikainen; S. Lance; Daniel S. Tkacik; P. Tiitta; Tuukka Petäjä; Mikael Ehn; Markku Kulmala; D. R. Worsnop; Ari Laaksonen; James N. Smith; Athanasios Nenes
Atmospheric Chemistry and Physics | 2014
K. Cerully; A. Bougiatioti; James Ricky Hite; Hongyu Guo; Lu Xu; Nga L. Ng; Rodney J. Weber; Athanasios Nenes