Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where K. D. Finkelstein is active.

Publication


Featured researches published by K. D. Finkelstein.


Acta Crystallographica Section D-biological Crystallography | 2002

Flash-cooling and annealing of protein crystals

S. Kriminski; Craig L. Caylor; Nonato Mc; K. D. Finkelstein; Robert E. Thorne

Flash-cooling and annealing of macromolecular crystals have been investigated using in situ X-ray imaging, diffraction-peak lineshape measurements and conventional crystallographic diffraction. The dominant mechanisms by which flash-cooling creates disorder are suggested and a fixed-temperature annealing protocol for reducing this disorder is demonstrated that should be more reliable and flexible than existing protocols. Flash-cooling tetragonal lysozyme crystals degrades diffraction resolution and broadens the distributions of lattice orientations (mosaicity) and lattice spacings. The diffraction resolution strongly correlates with the width of the lattice-spacing distribution. Annealing at fixed temperatures of 253 and 233 K consistently reduces the lattice-spacing spread and improves the resolution for annealing times up to approximately 30s. X-ray images show that this improvement arises from the formation of well ordered domains with characteristic sizes >10 microm and narrower mosaicities than the crystal as a whole. Flash-cooled triclinic crystals of lysozyme, which have a smaller water content than the tetragonal form, diffract to higher resolution with smaller mosaicities and exhibit pronounced ordered domain structure even before annealing. It is suggested that differential thermal expansion of the protein lattice and solvent may be the primary cause of flash-cooling-induced disorder. Mechanisms by which annealing at T << 273 K reduce this disorder are discussed.


Inorganic Chemistry | 2012

Bis(imino)pyridine Iron Dinitrogen Compounds Revisited: Differences in Electronic Structure Between Four- and Five-Coordinate Derivatives.

S. Chantal E. Stieber; Carsten Milsmann; Jordan M. Hoyt; Zoë R. Turner; K. D. Finkelstein; Karl Wieghardt; Serena DeBeer

The electronic structures of the four- and five-coordinate aryl-substituted bis(imino)pyridine iron dinitrogen complexes, ((iPr)PDI)FeN(2) and ((iPr)PDI)Fe(N(2))(2) ((iPr)PDI = 2,6-(2,6-(i)Pr(2)-C(6)H(3)-N=CMe)(2)C(5)H(3)N), have been investigated by a combination of spectroscopic techniques (NMR, Mössbauer, X-ray Absorption, and X-ray Emission) and DFT calculations. Homologation of the imine methyl backbone to ethyl or isopropyl groups resulted in the preparation of the new bis(imino)pyridine iron dinitrogen complexes, ((iPr)RPDI)FeN(2) ((iPr)RPDI = 2,6-(2,6-(i)Pr(2)-C(6)H(3)-N=CR)(2)C(5)H(3)N; R = Et, (i)Pr), that are exclusively four coordinate both in the solid state and in solution. The spectroscopic and computational data establish that the ((iPr)RPDI)FeN(2) compounds are intermediate spin ferrous derivatives (S(Fe) = 1) antiferromagnetically coupled to bis(imino)pyridine triplet diradical dianions (S(PDI) = 1). While this ground state description is identical to that previously reported for ((iPr)PDI)Fe(DMAP) (DMAP = 4-N,N-dimethylaminopyridine) and other four-coordinate iron compounds with principally σ-donating ligands, the d-orbital energetics determine the degree of coupling of the metal-chelate magnetic orbitals resulting in different NMR spectroscopic behavior. For ((iPr)RPDI)Fe(DMAP) and related compounds, this coupling is strong and results in temperature independent paramagnetism where a triplet excited state mixes with the singlet ground state via spin orbit coupling. In the ((iPr)RPDI)FeN(2) family, one of the iron singly occupied molecular orbitals (SOMOs) is essentially d(z(2)) in character resulting in poor overlap with the magnetic orbitals of the chelate, leading to thermal population of the triplet state and hence temperature dependent NMR behavior. The electronic structures of ((iPr)RPDI)FeN(2) and ((iPr)PDI)Fe(DMAP) differ from ((iPr)PDI)Fe(N(2))(2), a highly covalent molecule with a redox noninnocent chelate that is best described as a resonance hybrid between iron(0) and iron(II) canonical forms as originally proposed in 2004.


Review of Scientific Instruments | 1989

Liquid gallium cooling of silicon crystals in high intensity photon beams (invited)

Robert K. Smither; George A. Forster; D. H. Bilderback; Michael J. Bedzyk; K. D. Finkelstein; C. Henderson; J. White; L. E. Berman; P.M. Stefan; T. Oversluizen

The high‐brilliance, insertion‐device‐based photon beams of the next generation of synchrotron sources (Argonne’s APS and Grenoble’s ESRF) will deliver large thermal loads (1–10 kW) to the first optical elements. Considering the problems that present synchrotron users are experiencing with beams from recently installed insertion devices, new and improved methods of cooling these first optical elements, particularly when they are diffraction crystals, are clearly needed. A series of finite element calculations were performed to test the efficiency of new cooling geometries and various cooling fluids. The best results were obtained with liquid Ga metal flowing in channels just below the surface of the crystal. Ga was selected because of its good thermal conductivity and thermal capacity, low melting point, high boiling point, low kinetic viscosity, and very low vapor pressure. Its very low vapor pressure, even at elevated temperatures, makes it especially attractive in UHV conditions. A series of experiment...


Inorganic Chemistry | 2011

Kβ X-ray emission spectroscopy offers unique chemical bonding insights: revisiting the electronic structure of ferrocene.

Kyle M. Lancaster; K. D. Finkelstein; Serena DeBeer

Kβ X-ray emission spectroscopy (XES) is emerging as a powerful tool for the study of chemical bonding. Analyses of the Kβ XES of ferrocene (Fc) and ferrocenium (Fc(+)) are presented as further demonstrations of the capabilities of the technique. Assignments of the valence to core (V2C) region of these spectra as electric dipole-allowed cyclopentadienyl (Cp) → Fe 1s transitions demonstrate that XES affords electronic structural insight into the energetics of ligand-based molecular orbitals (MOs). Combined with K-edge X-ray absorption spectroscopy (XAS), we show that XES can provide analogous information to photoemission spectroscopy (PES). Density functional theory (DFT) analyses reveal that the V2C transitions in Fc/Fc(+) derive their intensity from Fe 4p admixture (on the order of 5-10%) into the Cp-based MOs from which they originate. These 4p admixtures confer bonding character to the Cp-based a(2u) and e(1u) MOs to at least the extent of backbonding contributions to frontier MOs from higher-lying Cp π* MOs.


Journal of Crystal Growth | 1999

X-ray diffraction studies of protein crystal disorder

I. Dobrianov; Craig L. Caylor; Serge G. Lemay; K. D. Finkelstein; Robert E. Thorne

Protein crystals contain many kinds of disorder, but only a small fraction of these are likely to be important in limiting the di⁄raction properties of interest to crystallographers. X-ray topography, high-angular-resolution reciprocal space measurements, and standard crystallographic data collection have been used to probe three factors that may produce di⁄raction-limiting disorder: (1) solution variations during crystal growth, (2) macromolecular impurities, and (3) post-growth crystal treatments. Variations in solution conditions that occur in widely used growth methods may lead to variations in equilibrium protein conformation and crystal packing as a crystal grows, and these may introduce appreciable disorder for sensitive proteins. Tetragonal lysozyme crystals subjected to abrupt changes in temperature, pH, or salt concentration during growth show increased disorder, consistent with this mechanism. Macromolecular impurities can have profound e⁄ects on protein crystal quality. A combination of di⁄raction measurements provides insight into the mechanisms by which particular impurities create disorder, and this insight leads to a simple approach for reducing this disorder. Substantial degradation of di⁄raction properties due to conformation and lattice constant changes can occur during post-growth crystal treatments such as heavy-atom compound and drug binding. Measurements of the time evolution of crystal disorder during controlled crystal dehydration — a simple model for such treatments — suggest that structural metastability conferred by the constraints of the crystal lattice plays an important role in determining the extent to which the di⁄raction properties degrade. ( 1999 Elsevier Science B.V. All rights reserved.


Physical Review Letters | 2004

Imaging density disturbances in water with a 41.3-attosecond time resolution

Peter Abbamonte; K. D. Finkelstein; M. D. Collins; Sol M. Gruner

We show that the momentum flexibility of inelastic x-ray scattering may be exploited to invert its loss function, allowing real time imaging of density disturbances in a medium. We show the disturbance arising from a point source in liquid water, with a resolution of 41.3 attoseconds (4.13 x 10(-17) s) and 1.27 A (1.27 x 10(-8) cm). This result is used to determine the structure of the electron cloud around a photoexcited chromophore in solution, as well as the wake generated in water by a 9 MeV gold ion. We draw an analogy with pump-probe techniques and suggest that energy-loss scattering may be applied more generally to the study of attosecond phenomena.


Review of Scientific Instruments | 1989

Performance of a hard x-ray undulator at CHESS (invited)

D. H. Bilderback; B. W. Batterman; Michael J. Bedzyk; K. D. Finkelstein; C. Henderson; A. Merlini; Wilfried Schildkamp; Qun Shen; J. White; E. B. Blum; P. J. Viccaro; Dennis M. Mills; Seong Keun Kim; G. K. Shenoy; K. E. Robinson; F. E. James; J. M. Slater

A 3.3‐cm period Nd‐Fe‐B hybrid undulator has been designed and successfully operated in the Cornell Electron Storage Ring (CESR). This 2‐m‐long, 123‐pole insertion device is a prototype of one of the undulators planned for the Advanced Photon Source. In dedicated operation, the undulator produced the expected brightness at 5.437 GeV with the fundamental x‐ray energy ranging from 4.3 to 7.9 keV corresponding to a change in gap from 1.5 to 2.8 cm.


Acta Crystallographica Section D-biological Crystallography | 2001

Dynamic response of tetragonal lysozyme crystals to changes in relative humidity: implications for post-growth crystal treatments

I. Dobrianov; S. Kriminski; Craig L. Caylor; Serge G. Lemay; C. Kimmer; A. Kisselev; K. D. Finkelstein; Robert E. Thorne

The dynamic response of tetragonal lysozyme crystals to dehydration has been characterized in situ using a combination of X-ray topography, high-resolution diffraction line-shape measurements and conventional crystallographic diffraction. For dehydration from 98% relative humidity (r.h.) to above 89%, mosaicity and diffraction resolution show little change and X-ray topographs remain featureless. Lattice constants decrease rapidly but the lattice-constant distribution within the crystal remains very narrow, indicating that water concentration gradients remain very small. Near 88% r.h., the c-axis lattice parameter decreases abruptly, the steady-state mosaicity and diffraction resolution degrade sharply and topographs develop extensive contrast. This transformation exhibits metastability and hysteresis. At fixed r.h. < 88% it is irreversible, but the original order can be almost completely restored by rehydration. These results suggest that this transformation is a first-order structural transition involving an abrupt loss of crystal water. The front between transformed and untransformed regions may propagate inward from the crystal surface and the resulting stresses along the front may degrade mosaicity. Differences in crystal size, shape and initial perfection may produce the observed variations in degradation timescale. Consequently, the success of more general post-growth treatments may often involve identifying procedures that either avoid lattice transitions, minimize disorder created during such transitions or maintain the lattice in an ordered metastable state.


Methods in Enzymology | 2009

Using Anomalous Small Angle X-Ray Scattering to Probe the Ion Atmosphere Around Nucleic Acids

Suzette A. Pabit; K. D. Finkelstein; Lois Pollack

Anomalous small angle X-ray scattering (ASAXS) exploits contrast variation methods to highlight the scattering from one elemental component in a multielement sample, such as one ion species in an ion-DNA system. The ASAXS method has been applied to measure ions condensed around short nucleic acid duplexes. This chapter, which briefly describes the origin of the ASAXS signal, focuses on the experimental methods required to carry out these measurements and the interpretation of the anomalous signals.


Journal of the American Chemical Society | 2016

Spectroscopic Evidence for a 3d10 Ground State Electronic Configuration and Ligand Field Inversion in [Cu(CF3)4]1–

Richard C. Walroth; James T. Lukens; Samantha N. MacMillan; K. D. Finkelstein; Kyle M. Lancaster

The contested electronic structure of [Cu(CF3)4](1-) is investigated with UV/visible/near IR spectroscopy, Cu K-edge X-ray absorption spectroscopy, and 1s2p resonant inelastic X-ray scattering. These data, supported by density functional theory, multiplet theory, and multireference calculations, support a ground state electronic configuration in which the lowest unoccupied orbital is of predominantly trifluoromethyl character. The consensus 3d(10) configuration features an inverted ligand field in which all five metal-localized molecular orbitals are located at lower energy relative to the trifluoromethyl-centered σ orbitals.

Collaboration


Dive into the K. D. Finkelstein's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge