K.J. Betsch
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by K.J. Betsch.
Nature Communications | 2012
Boris Bergues; Matthias Kübel; Nora G. Johnson; Bettina Fischer; Nicolas Camus; K.J. Betsch; Oliver Herrwerth; Arne Senftleben; A. Max Sayler; Tim Rathje; Thomas Pfeifer; Itzik Ben-Itzhak; R. R. Jones; G. G. Paulus; Ferenc Krausz; R. Moshammer; Joachim Ullrich; Matthias F. Kling
Despite their broad implications for phenomena such as molecular bonding or chemical reactions, our knowledge of multi-electron dynamics is limited and their theoretical modelling remains a most difficult task. From the experimental side, it is highly desirable to study the dynamical evolution and interaction of the electrons over the relevant timescales, which extend into the attosecond regime. Here we use near-single-cycle laser pulses with well-defined electric field evolution to confine the double ionization of argon atoms to a single laser cycle. The measured two-electron momentum spectra, which substantially differ from spectra recorded in all previous experiments using longer pulses, allow us to trace the correlated emission of the two electrons on sub-femtosecond timescales. The experimental results, which are discussed in terms of a semiclassical model, provide strong constraints for the development of theories and lead us to revise common assumptions about the mechanism that governs double ionization.
Nature Communications | 2014
Ali Sami Alnaser; Matthias Kübel; R. Siemering; Boris Bergues; Nora G. Kling; K.J. Betsch; Yunpei Deng; J. Schmidt; Z.A. Alahmed; Abdallah M. Azzeer; J. Ullrich; I. Ben-Itzhak; R. Moshammer; Ulf Kleineberg; Ferenc Krausz; R. de Vivie-Riedle; Matthias F. Kling
Subfemtosecond control of the breaking and making of chemical bonds in polyatomic molecules is poised to open new pathways for the laser-driven synthesis of chemical products. The break-up of the C-H bond in hydrocarbons is an ubiquitous process during laser-induced dissociation. While the yield of the deprotonation of hydrocarbons has been successfully manipulated in recent studies, full control of the reaction would also require a directional control (that is, which C-H bond is broken). Here, we demonstrate steering of deprotonation from symmetric acetylene molecules on subfemtosecond timescales before the break-up of the molecular dication. On the basis of quantum mechanical calculations, the experimental results are interpreted in terms of a novel subfemtosecond control mechanism involving non-resonant excitation and superposition of vibrational degrees of freedom. This mechanism permits control over the directionality of chemical reactions via vibrational excitation on timescales defined by the subcycle evolution of the laser waveform.
New Journal of Physics | 2012
Sergey Zherebtsov; Frederik Süßmann; Christian Peltz; J. Plenge; K.J. Betsch; Irina Znakovskaya; Ali Sami Alnaser; Nora G. Johnson; Matthias Kübel; Anton Horn; V. Mondes; Christina Graf; Sergei A. Trushin; Abdallah M. Azzeer; Marc J. J. Vrakking; G. G. Paulus; Ferenc Krausz; E. Rühl; Thomas Fennel; Matthias F. Kling
Waveform-controlled light fields offer the possibility of manipu- lating ultrafast electronic processes on sub-cycle timescales. The optical light- wave control of the collective electron motion in nanostructured materials is key to the design of electronic devices operating at up to petahertz frequencies. We have studied the directional control of the electron emission from 95nm 10 Authors to whom any correspondence should be addressed.
Physical Review Letters | 2013
Nora G. Kling; K.J. Betsch; M. Zohrabi; Shuo Zeng; Fatima Anis; U. Ablikim; Bethany Jochim; Zhenhua Wang; Matthias Kübel; Matthias F. Kling; K. D. Carnes; B. D. Esry; I. Ben-Itzhak
The dissociation of an H2+ molecular-ion beam by linearly polarized, carrier-envelope-phase-tagged 5 fs pulses at 4×10(14) W/cm2 with a central wavelength of 730 nm was studied using a coincidence 3D momentum imaging technique. Carrier-envelope-phase-dependent asymmetries in the emission direction of H+ fragments relative to the laser polarization were observed. These asymmetries are caused by interference of odd and even photon number pathways, where net zero-photon and one-photon interference predominantly contributes at H+ + H kinetic energy releases of 0.2-0.45 eV, and net two-photon and one-photon interference contributes at 1.65-1.9 eV. These measurements of the benchmark H2+ molecule offer the distinct advantage that they can be quantitatively compared with ab initio theory to confirm our understanding of strong-field coherent control via the carrier-envelope phase.
Journal of Physics B | 2014
Hui Li; Ali Sami Alnaser; Xiao-Min Tong; K.J. Betsch; Matthias Kübel; T. Pischke; Benjamin Förg; Johannes Schötz; Frederik Süßmann; Sergey Zherebtsov; Boris Bergues; Alexander Kessel; Sergei A. Trushin; Abdallah M. Azzeer; Matthias F. Kling
Light-field driven electron localization in deuterium molecules in intense near single-cycle laser fields is studied as a function of the laser intensity. The emission of D+ ions from the dissociative ionization of D2 is interrogated with single-shot carrier–envelope phase (CEP)-tagged velocity map imaging. We explore the reaction for an intensity range of (1.0–2.8) × 1014 W cm−2, where laser-driven electron recollision leads to the population of excited states of D2+. Within this range we find the onset of dissociation from 3σ states of D2+ by comparing the experimental data to quantum dynamical simulations including the first eight states of D2+. We find that dissociation from the 3σ states yields D+ ions with kinetic energies above 8 eV. Electron localization in the dissociating molecule is identified through an asymmetry in the emission of D+ ions with respect to the laser polarization axis. The observed CEP-dependent asymmetry indicates two mechanisms for the population of 3σ states: (1) excitation by electron recollision to the lower excited states, followed by laser-field excitation to the 3σ states, dominating at low intensities, and (2) direct excitation to the 3σ states by electron recollision, playing a role at higher intensities.
New Journal of Physics | 2012
Matthias Kübel; K.J. Betsch; Nora G. Johnson; Ulf Kleineberg; R. Moshammer; J. Ullrich; G. G. Paulus; Matthias F. Kling; Boris Bergues
We present a detailed analysis of the systematic errors that affect single-shot carrier envelope phase (CEP) measurements in experiments with long acquisition times, for which only limited long-term laser stability can be achieved. After introducing a scheme for eliminating these systematic errors to a large extent, we apply our approach to investigate the CEP dependence of the yield of doubly charged ions produced via non-sequential double ionization of argon in strong near-single-cycle laser pulses. The experimental results are compared to predictions of semiclassical calculations.
Journal of Physical Chemistry Letters | 2016
Hui Li; Benoît Mignolet; Zhenhua Wang; K.J. Betsch; K. D. Carnes; I. Ben-Itzhak; C. L. Cocke; Françoise Remacle; Matthias F. Kling
The transition between two distinct ionization mechanisms in femtosecond laser fields at 785 nm is observed for C60 molecules. The transition occurs in the investigated intensity range from 3 to 20 TW/cm2 and is visualized in electron kinetic energy spectra below the one-photon energy (1.5 eV) obtained via velocity map imaging. Assignment of several observed broad spectral peaks to ionization from superatom molecular orbitals (SAMOs) and Rydberg states is based on time-dependent density functional theory simulations. We find that ionization from SAMOs dominates the spectra for intensities below 5 TW/cm2. As the intensity increases, Rydberg state ionization exceeds the prominence of SAMOs. Using short laser pulses (20 fs) allowed uncovering of distinct six-lobe photoelectron angular distributions with kinetic energies just above the threshold (below 0.2 eV), which we interpret as over-the-barrier ionization of shallow f-Rydberg states in C60.
Journal of Physics B | 2016
Hui Li; Xiao-Min Tong; Nora Schirmel; G. Urbasch; K.J. Betsch; Sergey Zherebtsov; Frederik Süßmann; Alexander Kessel; Sergei A. Trushin; G. G. Paulus; K-M Weitzel; Matthias F. Kling
We have studied the dissociative ionization of DCl in 4 fs laser fields at 720 nm central wavelength using intensities in the range (1.3-3.1) x 10(14) W cm(-2). By employing the phase-tagged velocity-map imaging technique, information about the angular distribution of deuterium ions as a function of their kinetic energy and the carrier-envelope phase is obtained. On the basis of the experimental data and semi-classical simulations, three regions are distinguished for the resulting D+ ions with different kinetic energies. The one with the lowest kinetic energy, around 5-7 eV, is from dissociation involving the X-state of DCl+, populated through direct ionization with the laser field. The second region, around 7-11 eV, originates from rescattering induced dissociative ionization. Above 2 x 10(14) W cm(-2) D+ ions with kinetic energies exceeding 15 eV are obtained, which we ascribe to double ionization induced by rescattered electrons.
New Journal of Physics | 2014
Matthias Kübel; K.J. Betsch; Nora G. Kling; A.S. Alnaser; J. Schmidt; Ulf Kleineberg; Yunpei Deng; I. Ben-Itzhak; G. G. Paulus; Thomas Pfeifer; Joachim Ullrich; R. Moshammer; Matthias F. Kling; Boris Bergues
The transition from the near-single to the multi-cycle regime in non-sequential double ionization of argon is investigated experimentally. Argon atoms are exposed to intense laser pulses with a center wavelength around 790 nm and the momenta of electrons and ions generated in the double ionization process are measured in coincidence using a reaction microscope. The duration of the near transform-limited pulses is varied from 4 to 30 fs. We observe an abrupt collapse of the cross-shaped two-electron momentum distribution [17] in the few-cycle regime. The transition to longer pulses is further accompanied by a strong increase in the fraction of anti-correlated to correlated electrons.
Scientific Reports | 2017
Bethany Jochim; R. Siemering; M. Zohrabi; O. Voznyuk; J.B. Mahowald; D.G. Schmitz; K.J. Betsch; Ben Berry; T. Severt; Nora G. Kling; T.G. Burwitz; K. D. Carnes; Matthias F. Kling; Itzik Ben-Itzhak; E. Wells; R. de Vivie-Riedle
Much of our intuition about strong-field processes is built upon studies of diatomic molecules, which typically have electronic states that are relatively well separated in energy. In polyatomic molecules, however, the electronic states are closer together, leading to more complex interactions. A combined experimental and theoretical investigation of strong-field ionization followed by hydrogen elimination in the hydrocarbon series C2D2, C2D4 and C2D6 reveals that the photofragment angular distributions can only be understood when the field-dressed orbitals rather than the field-free orbitals are considered. Our measured angular distributions and intensity dependence show that these field-dressed orbitals can have strong Rydberg character for certain orientations of the molecule relative to the laser polarization and that they may contribute significantly to the hydrogen elimination dissociative ionization yield. These findings suggest that Rydberg contributions to field-dressed orbitals should be routinely considered when studying polyatomic molecules in intense laser fields.