Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Boris Bergues is active.

Publication


Featured researches published by Boris Bergues.


Nature Communications | 2012

Attosecond tracing of correlated electron-emission in non-sequential double ionization

Boris Bergues; Matthias Kübel; Nora G. Johnson; Bettina Fischer; Nicolas Camus; K.J. Betsch; Oliver Herrwerth; Arne Senftleben; A. Max Sayler; Tim Rathje; Thomas Pfeifer; Itzik Ben-Itzhak; R. R. Jones; G. G. Paulus; Ferenc Krausz; R. Moshammer; Joachim Ullrich; Matthias F. Kling

Despite their broad implications for phenomena such as molecular bonding or chemical reactions, our knowledge of multi-electron dynamics is limited and their theoretical modelling remains a most difficult task. From the experimental side, it is highly desirable to study the dynamical evolution and interaction of the electrons over the relevant timescales, which extend into the attosecond regime. Here we use near-single-cycle laser pulses with well-defined electric field evolution to confine the double ionization of argon atoms to a single laser cycle. The measured two-electron momentum spectra, which substantially differ from spectra recorded in all previous experiments using longer pulses, allow us to trace the correlated emission of the two electrons on sub-femtosecond timescales. The experimental results, which are discussed in terms of a semiclassical model, provide strong constraints for the development of theories and lead us to revise common assumptions about the mechanism that governs double ionization.


Nature Communications | 2014

Subfemtosecond steering of hydrocarbon deprotonation through superposition of vibrational modes

Ali Sami Alnaser; Matthias Kübel; R. Siemering; Boris Bergues; Nora G. Kling; K.J. Betsch; Yunpei Deng; J. Schmidt; Z.A. Alahmed; Abdallah M. Azzeer; J. Ullrich; I. Ben-Itzhak; R. Moshammer; Ulf Kleineberg; Ferenc Krausz; R. de Vivie-Riedle; Matthias F. Kling

Subfemtosecond control of the breaking and making of chemical bonds in polyatomic molecules is poised to open new pathways for the laser-driven synthesis of chemical products. The break-up of the C-H bond in hydrocarbons is an ubiquitous process during laser-induced dissociation. While the yield of the deprotonation of hydrocarbons has been successfully manipulated in recent studies, full control of the reaction would also require a directional control (that is, which C-H bond is broken). Here, we demonstrate steering of deprotonation from symmetric acetylene molecules on subfemtosecond timescales before the break-up of the molecular dication. On the basis of quantum mechanical calculations, the experimental results are interpreted in terms of a novel subfemtosecond control mechanism involving non-resonant excitation and superposition of vibrational degrees of freedom. This mechanism permits control over the directionality of chemical reactions via vibrational excitation on timescales defined by the subcycle evolution of the laser waveform.


Nature Communications | 2013

Adaptive strong-field control of chemical dynamics guided by three-dimensional momentum imaging

E. Wells; C. E. Rallis; M. Zohrabi; R. Siemering; Bethany Jochim; P. R. Andrews; U. Ablikim; B. Gaire; S. De; K. D. Carnes; Boris Bergues; R. de Vivie-Riedle; Matthias F. Kling; Itzik Ben-Itzhak

Shaping ultrafast laser pulses using adaptive feedback can manipulate dynamics in molecular systems, but extracting information from the optimized pulse remains difficult. Experimental time constraints often limit feedback to a single observable, complicating efforts to decipher the underlying mechanisms and parameterize the search process. Here we show, using two strong-field examples, that by rapidly inverting velocity map images of ions to recover the three-dimensional photofragment momentum distribution and incorporating that feedback into the control loop, the specificity of the control objective is markedly increased. First, the complex angular distribution of fragment ions from the nω+C2D4→C2D3++D interaction is manipulated. Second, isomerization of acetylene (nω+C2H2→C2H2(2+)→CH2++C+) is controlled via a barrier-suppression mechanism, a result that is validated by model calculations. Collectively, these experiments comprise a significant advance towards the fundamental goal of actively guiding population to a specified quantum state of a molecule.


New Journal of Physics | 2011

Spatially resolved measurement of ionization yields in the focus of an intense laser pulse

Martin Schultze; Boris Bergues; Hartmut Schröder; Ferenc Krausz; K. L. Kompa

We introduce a novel technique for measuring spatially resolved photoionization yields of gas-phase ions created in an intense-laser focus. Overcoming the limitations of traditional experiments where the ionization yield is integrated over the entire focal volume, the technique provides precise information on the ionization dynamics over a wide range of intensities between the appearance intensity of the lowest charge state up to relativistic intensities. The new method provides insights into the ionization process beyond the saturation intensity and, at the same time, a precise way for noninvasive, in situ focus diagnostics. We demonstrate these advances for the case of strong-field ionization of argon. The data are analyzed using the Ammosov?Delone?Krainov (ADK) formula (Ammosov et al 1986 Zh. ?ksp. Teor. Fiz. 91 2008).


New Journal of Physics | 2014

Strong-field control of the dissociative ionization of N2O with near-single-cycle pulses

Matthias Kübel; Ali Sami Alnaser; Boris Bergues; T. Pischke; J. Schmidt; Yunpei Deng; C. Jendrzejewski; J. Ullrich; G. G. Paulus; Abdallah M. Azzeer; Ulf Kleineberg; R. Moshammer; Matthias F. Kling

The dissociative ionization of N2O by near-single-cycle laser pulses is studied using phase-tagged ion–ion coincidence momentum imaging. Carrier–envelope phase (CEP) dependences are observed in the absolute ion yields and the emission direction of nearly all ionization and dissociation pathways of the triatomic molecule. We find that laser-field-driven electron recollision has a significant impact on the dissociative ionization dynamics and results in pronounced CEP modulations in the dication yields, which are observed in the product ion yields after dissociation. The results indicate that the directional emission of coincident + N and + NO ions in the denitrogenation of the dication can be explained by selective ionization of oriented molecules. The deoxygenation of the dication with the formation of coincident + N 2 + + O ions exhibits an additional shift in its CEP dependence, suggesting that this channel is further influenced by laser interaction with the dissociating dication. The experimental


Physical Review Letters | 2016

Steering Proton Migration in Hydrocarbons Using Intense Few-Cycle Laser Fields

Matthias Kübel; R. Siemering; Christian Burger; Nora G. Kling; Hui Li; Ali Sami Alnaser; Boris Bergues; Sergey Zherebtsov; Abdallah M. Azzeer; I. Ben-Itzhak; R. Moshammer; R. de Vivie-Riedle; Matthias F. Kling

Proton migration is a ubiquitous process in chemical reactions related to biology, combustion, and catalysis. Thus, the ability to manipulate the movement of nuclei with tailored light within a hydrocarbon molecule holds promise for far-reaching applications. Here, we demonstrate the steering of hydrogen migration in simple hydrocarbons, namely, acetylene and allene, using waveform-controlled, few-cycle laser pulses. The rearrangement dynamics is monitored using coincident 3D momentum imaging spectroscopy and described with a widely applicable quantum-dynamical model. Our observations reveal that the underlying control mechanism is due to the manipulation of the phases in a vibrational wave packet by the intense off-resonant laser field.


Journal of Physics B | 2014

Intensity dependence of the attosecond control of the dissociative ionization of D2

Hui Li; Ali Sami Alnaser; Xiao-Min Tong; K.J. Betsch; Matthias Kübel; T. Pischke; Benjamin Förg; Johannes Schötz; Frederik Süßmann; Sergey Zherebtsov; Boris Bergues; Alexander Kessel; Sergei A. Trushin; Abdallah M. Azzeer; Matthias F. Kling

Light-field driven electron localization in deuterium molecules in intense near single-cycle laser fields is studied as a function of the laser intensity. The emission of D+ ions from the dissociative ionization of D2 is interrogated with single-shot carrier–envelope phase (CEP)-tagged velocity map imaging. We explore the reaction for an intensity range of (1.0–2.8) × 1014 W cm−2, where laser-driven electron recollision leads to the population of excited states of D2+. Within this range we find the onset of dissociation from 3σ states of D2+ by comparing the experimental data to quantum dynamical simulations including the first eight states of D2+. We find that dissociation from the 3σ states yields D+ ions with kinetic energies above 8 eV. Electron localization in the dissociating molecule is identified through an asymmetry in the emission of D+ ions with respect to the laser polarization axis. The observed CEP-dependent asymmetry indicates two mechanisms for the population of 3σ states: (1) excitation by electron recollision to the lower excited states, followed by laser-field excitation to the 3σ states, dominating at low intensities, and (2) direct excitation to the 3σ states by electron recollision, playing a role at higher intensities.


Journal of The Optical Society of America B-optical Physics | 2014

Single-shot autocorrelator for extreme-ultraviolet radiation

G. Kolliopoulos; P. Tzallas; Boris Bergues; P. A. Carpeggiani; Patrick Heißler; Hartmut Schröder; Laszlo Veisz; D. Charalambidis; George D. Tsakiris

A novel single-shot second-order autocorrelation scheme for extreme-ultraviolet radiation (XUV) is proposed. It is based on an ion-imaging technique, which provides spatial information of ionizatio ...


New Journal of Physics | 2012

Carrier-envelope-phase tagging in measurements with long acquisition times

Matthias Kübel; K.J. Betsch; Nora G. Johnson; Ulf Kleineberg; R. Moshammer; J. Ullrich; G. G. Paulus; Matthias F. Kling; Boris Bergues

We present a detailed analysis of the systematic errors that affect single-shot carrier envelope phase (CEP) measurements in experiments with long acquisition times, for which only limited long-term laser stability can be achieved. After introducing a scheme for eliminating these systematic errors to a large extent, we apply our approach to investigate the CEP dependence of the yield of doubly charged ions produced via non-sequential double ionization of argon in strong near-single-cycle laser pulses. The experimental results are compared to predictions of semiclassical calculations.


New Journal of Physics | 2011

Sub-cycle electron control in the photoionization of xenon using a few-cycle laser pulse in the mid-infrared

Boris Bergues; Sergey Zherebtsov; Yunpei Deng; Xun Gu; Irina Znakovskaya; Reinhard Kienberger; Ferenc Krausz; Gilad Marcus; Matthias F. Kling

Using few-cycle laser pulses generated by optical parametric chirped pulse amplification, sub-cycle light-wave control of electrons was achieved at a carrier wavelength of 2.1 μm. We demonstrate the sub-cycle light-wave control in the case of strong field ionization of xenon atoms. Angle-resolved spectra of electrons emitted in the photoionization process were recorded as a function of the carrier-envelope phase (CEP) using an electron imaging technique. We observed a clear CEP-dependent asymmetry in the electron momentum distribution.

Collaboration


Dive into the Boris Bergues's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge