K. Jurkiewicz
University of Silesia in Katowice
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by K. Jurkiewicz.
Molecular Pharmaceutics | 2015
J. Knapik; Z. Wojnarowska; K. Grzybowska; K. Jurkiewicz; Lidia Tajber; M. Paluch
Low physical stability is the main reason limiting the widespread use of amorphous pharmaceuticals. One approach to overcome this problem is to mix these drugs with various excipients. In this study coamorphous drug-drug compositions of different molar ratios of ezetimib and indapamid (i.e., EZB 10:1 IDP, EZB 5:1 IDP, EZB 2:1 IDP, EZB 1:1 IDP and EZB 1:2 IDP) were prepared and investigated using differential scanning calorimetry (DSC), broadband dielectric spectroscopy (BDS), and X-ray diffraction (XRD). Our studies have shown that the easily recrystallizing ezetimib drug can be significantly stabilized in its amorphous form by using even a small amount of indapamid (8.8 wt %). DSC experiments indicate that the glass transition temperature (Tg) of the tested mixtures changes with the drug concentration in accordance with the Gordon-Taylor equation. We also investigated the effect of indapamid on the molecular dynamics of the ezetimib. As a result it was found that, with increasing indapamid content, the molecular mobility of the binary drug-drug system is slowed down. Finally, using the XRD technique we examined the long-term physical stability of the investigated binary systems stored at room temperature. These measurements prove that low-molecular-weight compounds are able to significantly improve the physical stability of amorphous APIs.
Molecular Pharmaceutics | 2015
Marzena Rams-Baron; Z. Wojnarowska; K. Grzybowska; Mateusz Dulski; J. Knapik; K. Jurkiewicz; W. Smolka; Wiesław Sawicki; Ratuszna A; M. Paluch
The aim of this article is to examine the crystallization tendencies of three chemically related amorphous anti-inflammatory agents, etoricoxib, celecoxib, and rofecoxib. Since the molecular mobility is considered as one of the factors affecting the crystallization behavior of a given material, broadband dielectric spectroscopy was used to gain insight into the molecular dynamics of the selected active pharmaceutical ingredients. Interestingly, our experiments did not reveal any significant differences in their relaxation behavior either in the supercooled liquid or in the glassy state. Hence, as a possible explanation for the enhanced physical stability of etoricoxib, its ability to undergo a tautomerization reaction was recognized. The occurrence of intramolecular proton transfer in the disordered etoricoxib was proven experimentally by time-dependent dielectric and infrared (IR) measurements. Additionally, IR spectroscopy combined with density functional theory calculations pointed out that in the etoricoxib drug, being in fact a binary mixture of tautomers, the individual isomers may interact with each other through a hydrogen bonding network. A possible explanation of this issue was achieved by performing dielectric experiments at elevated pressure. Since compression results in etoricoxib recrystallization, the possible influence of pressure on the observed stabilization effect is also carefully discussed.
Molecular Pharmaceutics | 2015
E. Kaminska; Magdalena Tarnacka; P. Wlodarczyk; K. Jurkiewicz; K. Kolodziejczyk; Mateusz Dulski; D. Haznar-Garbacz; L. Hawelek; K. Kaminski; A. Wlodarczyk; M. Paluch
Molecular dynamics of pure nifedipine and its solid dispersions with modified carbohydrates as well as the crystallization kinetics of active pharmaceutical ingredient (API) above and below the glass transition temperature were studied in detail by means of broadband dielectric spectroscopy (BDS), differential scanning calorimetry (DSC), and X-ray diffraction method. It was found that the activation barrier of crystallization increases in molecular dispersions composed of acetylated disaccharides, whereas it slightly decreases in those consisting of modified monocarbohydrates for the experiments carried out above the glass transition temperature. As shown by molecular dynamics simulations it can be related to the strength, character, and structure of intermolecular interactions between API and saccharides, which vary dependently on the excipient. Long-term physical stability studies showed that, in solid dispersions consisting of acetylated maltose and acetylated sucrose, the crystallization of nifedipine is dramatically slowed down, although it is still observable for a low concentration of excipients. With increasing content of modified carbohydrates, the crystallization of API becomes completely suppressed. This is most likely due to additional barriers relating to the intermolecular interactions and diffusion of nifedipine that must be overcome to trigger the crystallization process.
Molecular Pharmaceutics | 2016
J. Knapik; Z. Wojnarowska; K. Grzybowska; K. Jurkiewicz; A. Stankiewicz; M. Paluch
The purpose of this paper is to investigate the influence of nanoconfinement on the molecular mobility, as well as on the physical stability, of amorphous ezetimibe drug. Two guest/host systems, ezetimibe-Aeroperl 300 and ezetimibe-Neusilin US2, were prepared and studied using various experimental techniques, such as X-ray diffraction (XRD), differential scanning calorimetry (DSC), and broadband dielectric spectroscopy (BDS). Our investigation has shown that the molecular mobility of the examined anticholesterol agent incorporated into nanopore matrices strongly depends on the pore size of the host system. Moreover, it was found that the amorphous ezetimibe confined in 30 nm pores of Aeroperl 300 has a tendency to recrystallize, while the drug incorporated into the smaller--5 nm--pores of Neusilin US2 is not able to crystallize. It has been shown that this significant stabilization of ezetimibe drug can be achieved by an interplay of three factors: changes in molecular dynamics of the confined amorphous drug, the immobilization effect of pore walls on a part of ezetimibe molecules, and the use of host materials with pores that are smaller than the critical size of the drug crystal nuclei.
Molecular Pharmaceutics | 2017
K. Grzybowska; Krzysztof Chmiel; Justyna Knapik-Kowalczuk; A. Grzybowski; K. Jurkiewicz; M. Paluch
Transformation of poorly water-soluble crystalline pharmaceuticals to the amorphous form is one of the most promising strategies to improve their oral bioavailability. Unfortunately, the amorphous drugs are usually thermodynamically unstable and may quickly return to their crystalline form. A very promising way to enhance the physical stability of amorphous drugs is to prepare amorphous compositions of APIs with certain excipients which can be characterized by significantly different molecular weights, such as polymers, acetate saccharides, and other APIs. By using different experimental techniques (broadband dielectric spectroscopy, differential scanning calorimetry, X-ray diffraction) we compare the effect of adding the large molecular weight polymer-polyvinylpyrrolidone (PVP K30)-and the small molecular weight excipient-octaacetylmaltose (acMAL)-on molecular dynamics as well as the tendency to recrystallization of the amorphous celecoxib (CEL) in the amorphous solid dispersions: CEL-PVP and CEL-acMAL. The physical stability investigations of the binary systems were performed in both the supercooled liquid and glassy states. We found that acMAL is a better inhibitor of recrystallization of amorphous CEL than PVP K30 deep in the glassy state (T < Tg). In contrast, PVP K30 is a better crystallization inhibitor of CEL than acMAL in the supercooled liquid state (at T > Tg). We discuss molecular factors governing the recrystallization of amorphous CEL in examined solid dispersions.
Journal of Applied Crystallography | 2017
K. Jurkiewicz; S. Duber; Henry E. Fischer; A. Burian
Glass-like carbon is a well known carbon form that still poses many challenges for structural characterization owing to a very complex internal atomic organization. Recent research suggests that glassy carbon has a fullerene-related structure that evolves with the synthesis temperature. This article reports on direct evidence of curved planes in glassy carbons using neutron and X-ray diffraction measurements and their analysis in real space using the atomic pair distribution function formalism. Changes in the structure including the degree of curvature of the non-graphitizing glassy carbons as a function of the pyrolysis temperature in the range 800–2500°C (1073–2773 K) are studied using optimized models of the atomic structure. Averaged models of single coherent scattering domains as well as larger structural fragments consisting of thousands of atoms were relaxed using classical molecular dynamics. For such models the diffraction intensities and the pair distribution functions were computed. The compatibility of the computer-generated models was verified by comparison of the simulations with the experimental diffraction data in both reciprocal and real spaces. On the basis of features of the developed structural models for glass-like carbons, the origin of the properties such as high strength and hardness and low gas permeability can be better understood.
Journal of Chemical Physics | 2016
E. Kaminska; Magdalena Tarnacka; K. Jurkiewicz; K. Kaminski; M. Paluch
High pressure dielectric studies on the H-bonded liquid D-glucose and Orientationally Disordered Crystal (ODIC) 1,6-anhydro-D-glucose (levoglucosan) were carried out. It was shown that in both compounds, the structural relaxation is weakly sensitive to compression. It is well reflected in the low pressure coefficient of the glass transition and orientational glass transition temperatures which is equal to 60 K/GPa for both D-glucose and 1,6-anhydro-D-glucose. Although it should be noted that ∂Tg(0)/∂p evaluated for the latter compound seems to be enormously high with respect to other systems forming ODIC phase. We also found that the shape of the α-loss peak stays constant for the given relaxation time independently on the thermodynamic condition. Consequently, the Time Temperature Pressure (TTP) rule is satisfied. This experimental finding seems to be quite intriguing since the TTP rule was shown to work well in the van der Waals liquids, while in the strongly associating compounds, it is very often violated. We have also demonstrated that the sensitivity of the structural relaxation process to the temperature change measured by the steepness index (mp) drops with pressure. Interestingly, this change is much more significant in the case of D-glucose with respect to levoglucosan, where the fragility changes only slightly with compression. Finally, kinetics of ODIC-crystal phase transition was studied at high compression. It is worth mentioning that in the recent paper, Tombari and Johari [J. Chem. Phys. 142, 104501 (2015)] have shown that ODIC phase in 1,6-anhydro-D-glucose is stable in the wide range of temperatures and there is no tendency to form more ordered phase at ambient pressure. On the other hand, our isochronal measurements performed at varying thermodynamic conditions indicated unquestionably that the application of pressure favors solid (ODIC)-solid (crystal) transition in 1,6-anhydro-D-glucose. This result mimics the impact of pressure on the crystallization of fully disordered supercooled van der Waals liquids.
Journal of Physical Chemistry A | 2015
K. Jurkiewicz; Łukasz Hawełek; Katarzyna Balin; J. Szade; F. L. Braghiroli; Vanessa Fierro; Alain Celzard; A. Burian
The atomic structure of carbon materials prepared from natural tannin by two different techniques, high-temperature pyrolysis and low-temperature hydrothermal carbonization, was studied by wide-angle X-ray scattering. The obtained diffraction data were converted to the real space representation in the form of pair distribution functions. The X-ray photoelectron spectroscopy measurements provided information about the chemical state of carbon in tannin-based materials that was used to construct final structural models of the investigated samples. The results of the experimental data in both reciprocal and real spaces were compared with computer simulations based on the PM7 semiempirical quantum chemical method. Using the collected detailed information, structural models of the tannin-based carbons were proposed. The characteristics of the investigated materials at the atomic level were discussed in relation to their preparation method. The rearrangement of the tannin molecular structure and its transformation to graphene-like structure was described. The structure of tannin-based carbons pyrolyzed at 900 °C exhibited coherently scattering domains about 20 Å in size, consisting of two defected atomic layers and resembling a graphene-like arrangement.
European Journal of Pharmaceutics and Biopharmaceutics | 2017
E. Kaminska; Olga Madejczyk; Magdalena Tarnacka; K. Jurkiewicz; K. Kaminski; M. Paluch
Graphical abstract No caption available. Abstract Broadband dielectric spectroscopy (BDS) and differential scanning calorimetry (DSC) were applied to investigate the molecular dynamics and phase transitions in binary mixtures composed of naproxen (NAP) and acetylated saccharides: maltose (acMAL) and sucrose (acSUC). Moreover, the application of BDS method and optical microscopy enabled us to study both crystallization kinetics and crystal growth of naproxen from the solid dispersions with the highest content of modified carbohydrates (1:5 wt ratio). It was found that the activation barriers of crystallization estimated from dielectric measurements are completely different for both studied herein mixtures. Much higher Ea (=205 kJ/mol) was obtained for NAP‐acMAL solid dispersion. It is probably due to simultaneous crystallization of both components of the mixture. On the other hand, lower value of Ea in the case of NAP‐acSUC solid dispersion (81 kJ/mol) indicated, that naproxen is the only crystallizing compound. This hypothesis was confirmed by X‐ray diffraction studies. We also suggested that specific intermolecular dipole‐dipole interactions between active substance and excipient may be an alternative explanation for the difference between activation barrier obtained for NAP‐acMAL and NAP‐acSUC binary mixtures. Furthermore, optical measurements showed that the activation energy for crystal growth of naproxen increases in binary mixtures. They also revealed that both excipients: acMAL and acSUC move the temperature of the maximum of crystal growth towards lower temperatures. Interestingly, this maximum occurs for nearly the same structural relaxation time, which is a good approximation of viscosity, for all samples. Finally, it was also noticed that although naproxen crystallizes to the same polymorphic form in both systems, there are some differences in morphology of obtained crystals. Thus, the observed behavior may have a significant impact on the bioavailability and dissolution rate of API produced in that way.
Molecular Pharmaceutics | 2017
Krzysztof Chmiel; Justyna Knapik-Kowalczuk; K. Jurkiewicz; W. Sawicki; Renata Jachowicz; M. Paluch
In this paper, a novel approach to determine stable concentration in API-polymer systems is presented. As a model, binary amorphous mixtures flutamide (FL) drug with a copolymer Kollidon VA64 (PVP/VA) have been used. It is worthwhile to note that finding an effective method to achieve this goal is a matter of great importance because physical stability of the amorphous pharmaceuticals is the key issue that is investigated worldwide. Due to the fact that molecular dynamics was found to be the crucial factor affecting physical stability of disordered pharmaceuticals, we examined it for both neat FL and its PVP/VA mixtures by means of broadband dielectric spectroscopy (BDS). Thorough investigation of the impact of polymeric additive on the molecular mobility of disordered FL reveals unusual, previously unreported behavior. Namely, simultaneously with the beginning of the recrystallization process, we observe some transformation from unstable supersaturated concentration of investigated mixture to the different, unknown concentration of FL-PVP/VA. Observed, during BDS experiment, transformation enables us to determine the limiting, highly physically stable concentration of FL in PVP/VA polymer (saturated solution), which is equivalent to FL + 41% wt. of PVP/VA. The described high physical stability of this unveiled system has been confirmed by means of long-term XRD measurements. According to our knowledge, this is the first time when such a behavior has been observed by means of BDS.