Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where K. Marie McIntyre is active.

Publication


Featured researches published by K. Marie McIntyre.


Journal of the Royal Society Interface | 2012

Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios

Cyril Caminade; Jolyon M. Medlock; Els Ducheyne; K. Marie McIntyre; Steve Leach; Matthew Baylis; Andrew P. Morse

The Asian tiger mosquito (Aedes albopictus) is an invasive species that has the potential to transmit infectious diseases such as dengue and chikungunya fever. Using high-resolution observations and regional climate model scenarios for the future, we investigated the suitability of Europe for A. albopictus using both recent climate and future climate conditions. The results show that southern France, northern Italy, the northern coast of Spain, the eastern coast of the Adriatic Sea and western Turkey were climatically suitable areas for the establishment of the mosquito during the 1960–1980s. Over the last two decades, climate conditions have become more suitable for the mosquito over central northwestern Europe (Benelux, western Germany) and the Balkans, while they have become less suitable over southern Spain. Similar trends are likely in the future, with an increased risk simulated over northern Europe and slightly decreased risk over southern Europe. These distribution shifts are related to wetter and warmer conditions favouring the overwintering of A. albopictus in the north, and drier and warmer summers that might limit its southward expansion.


Nature | 2004

Transmissible spongiform encephalopathies: Scrapie control under new strain

Matthew Baylis; K. Marie McIntyre

Sheep believed to be resistant to scrapie are succumbing to atypical infections and a newly identified strain of the disease. Eradication programmes based on selective breeding should be reappraised.


BMC Veterinary Research | 2006

Flock-level risk factors for scrapie in Great Britain: analysis of a 2002 anonymous postal survey

K. Marie McIntyre; Simon Gubbins; S Kumar Sivam; Matthew Baylis

BackgroundIn November 2002, an anonymous postal survey of sheep farmers in Great Britain (GB) was conducted to identify factors associated with the flock-level occurrence of scrapie. This survey was undertaken to update an earlier postal survey in 1998, and was the first occasion in which a large-scale postal survey had been repeated.ResultsThe results of the 2002 survey indicated that scrapie was more likely to occur in certain geographic regions; in purebred compared to commercial flocks; in larger flocks; in flocks which lambed in group pens compared to those which lambed in individual pens; in flocks which always lambed in the same location compared to those which did not; and in farms which kept certain breeds of sheep. In addition to these factors, the likelihood of the disease occurring in homebred animals was higher in flocks which bred a greater proportion of replacement animals or which bought-in lambs. Finally, within-flock transmission following exposure was more likely to occur in hill flocks compared to other farm types; in flocks which bred a greater proportion of replacement animals; and in farms which kept a certain crossbreed of ewe.ConclusionThe risk factors identified from the 1998 and 2002 anonymous postal surveys in Great Britain were similar. However, differences between the surveys were identified in the influence of region and of purchasing behaviour on the risk of scrapie. These differences are most likely a consequence of changes in farmer awareness and the impact of the 2001 foot-and-mouth disease epidemic, respectively.


Infection, Genetics and Evolution | 2014

Domesticated animals and human infectious diseases of zoonotic origins: Domestication time matters

Serge Morand; K. Marie McIntyre; Matthew Baylis

The rate of emergence for emerging infectious diseases has increased dramatically over the last century, and research findings have implicated wildlife as an importance source of novel pathogens. However, the role played by domestic animals as amplifiers of pathogens emerging from the wild could also be significant, influencing the human infectious disease transmission cycle. The impact of domestic hosts on human disease emergence should therefore be ascertained. Here, using three independent datasets we showed positive relationships between the time since domestication of the major domesticated mammals and the total number of parasites or infectious diseases they shared with humans. We used network analysis, to better visualize the overall interactions between humans and domestic animals (and amongst animals) and estimate which hosts are potential sources of parasites/pathogens for humans (and for all other hosts) by investigating the network architecture. We used centrality, a measure of the connection amongst each host species (humans and domestic animals) in the network, through the sharing of parasites/pathogens, where a central host (i.e. high value of centrality) is the one that is infected by many parasites/pathogens that infect many other hosts in the network. We showed that domesticated hosts that were associated a long time ago with humans are also the central ones in the network and those that favor parasites/pathogens transmission not only to humans but also to all other domesticated animals. These results urge further investigation of the diversity and origin of the infectious diseases of domesticated animals in their domestication centres and the dispersal routes associated with human activities. Such work may help us to better understand how domesticated animals have bridged the epidemiological gap between humans and wildlife.


PLOS ONE | 2008

Epidemiological characteristics of classical scrapie outbreaks in 30 sheep flocks in the United Kingdom.

K. Marie McIntyre; Simon Gubbins; Wilfred Goldmann; Nora Hunter; Matthew Baylis

Background Most previous analyses of scrapie outbreaks have focused on flocks run by research institutes, which may not reflect the field situation. Within this study, we attempt to rectify this deficit by describing the epidemiological characteristics of 30 sheep flocks naturally-infected with classical scrapie, and by exploring possible underlying causes of variation in the characteristics between flocks, including flock-level prion protein (PrP) genotype profile. In total, the study involved PrP genotype data for nearly 8600 animals and over 400 scrapie cases. Methodology/Principal Findings We found that most scrapie cases were restricted to just two PrP genotypes (ARQ/VRQ and VRQ/VRQ), though two flocks had markedly different affected genotypes, despite having similar underlying genotype profiles to other flocks of the same breed; we identified differences amongst flocks in the age of cases of certain PrP genotypes; we found that the age-at-onset of clinical signs depended on peak incidence and flock type; we found evidence that purchasing infected animals is an important means of introducing scrapie to a flock; we found some evidence that flock-level PrP genotype profile and flock size account for variation in outbreak characteristics; identified seasonality in cases associated with lambing time in certain flocks; and we identified one case that was homozygous for phenylalanine at codon 141, a polymorphism associated with a very high risk of atypical scrapie, and 28 cases that were heterozygous at this codon. Conclusions/Significance This paper presents the largest study to date on commercially-run sheep flocks naturally-infected with classical scrapie, involving 30 study flocks, more than 400 scrapie cases and over 8500 PrP genotypes. We show that some of the observed variation in epidemiological characteristics between farms is related to differences in their PrP genotype profile; although much remains unexplained and may instead be attributed to the stochastic nature of scrapie dynamics.


Scientific Reports | 2013

Climate variability and outbreaks of infectious diseases in Europe.

Serge Morand; Katharine A. Owers; Agnès Waret-Szkuta; K. Marie McIntyre; Matthew Baylis

Several studies provide evidence of a link between vector-borne disease outbreaks and El Niño driven climate anomalies. Less investigated are the effects of the North Atlantic Oscillation (NAO). Here, we test its impact on outbreak occurrences of 13 infectious diseases over Europe during the last fifty years, controlling for potential bias due to increased surveillance and detection. NAO variation statistically influenced the outbreak occurrence of eleven of the infectious diseases. Seven diseases were associated with winter NAO positive phases in northern Europe, and therefore with above-average temperatures and precipitation. Two diseases were associated with the summer or spring NAO negative phases in northern Europe, and therefore with below-average temperatures and precipitation. Two diseases were associated with summer positive or negative NAO phases in southern Mediterranean countries. These findings suggest that there is potential for developing early warning systems, based on climatic variation information, for improved outbreak control and management.


PLOS ONE | 2011

The H-index as a quantitative indicator of the relative impact of human diseases.

K. Marie McIntyre; Iain Hawkes; Agnès Waret-Szkuta; Serge Morand; Matthew Baylis

Assessment of the relative impact of diseases and pathogens is important for agencies and other organizations charged with providing disease surveillance, management and control. It also helps funders of disease-related research to identify the most important areas for investment. Decisions as to which pathogens or diseases to target are often made using complex risk assessment approaches; however, these usually involve evaluating a large number of hazards as it is rarely feasible to conduct an in-depth appraisal of each. Here we propose the use of the H-index (or Hirsch index) as an alternative rapid, repeatable and objective means of assessing pathogen impact. H-index scores for 1,414 human pathogens were obtained from the Institute for Scientific Informations Web of Science (WOS) in July/August 2010. Scores were compared for zoonotic/non-zoonotic, and emerging/non-emerging pathogens, and across taxonomic groups. H-indices for a subset of pathogens were compared with Disability Adjusted Life Year (DALY) estimates for the diseases they cause. H-indices ranged from 0 to 456, with a median of 11. Emerging pathogens had higher H-indices than non-emerging pathogens. Zoonotic pathogens tended to have higher H-indices than human-only pathogens, although the opposite was observed for viruses. There was a significant correlation between the DALY of a disease and the H-index of the pathogen(s) that cause it. Therefore, scientific interest, as measured by the H-index, appears to be a reflection of the true impact of pathogens. The H-index method can be utilized to set up an objective, repeatable and readily automated system for assessing pathogen or disease impact.


PLOS ONE | 2014

A Quantitative Prioritisation of Human and Domestic Animal Pathogens in Europe

K. Marie McIntyre; Christian Setzkorn; Philip J. Hepworth; Serge Morand; Andrew P. Morse; Matthew Baylis

Disease or pathogen risk prioritisations aid understanding of infectious agent impact within surveillance or mitigation and biosecurity work, but take significant development. Previous work has shown the H-(Hirsch-)index as an alternative proxy. We present a weighted risk analysis describing infectious pathogen impact for human health (human pathogens) and well-being (domestic animal pathogens) using an objective, evidence-based, repeatable approach; the H-index. This study established the highest H-index European pathogens. Commonalities amongst pathogens not included in previous surveillance or risk analyses were examined. Differences between host types (humans/animals/zoonotic) in pathogen H-indices were explored as a One Health impact indicator. Finally, the acceptability of the H-index proxy for animal pathogen impact was examined by comparison with other measures. 57 pathogens appeared solely in the top 100 highest H-indices (1) human or (2) animal pathogens list, and 43 occurred in both. Of human pathogens, 66 were zoonotic and 67 were emerging, compared to 67 and 57 for animals. There were statistically significant differences between H-indices for host types (humans, animal, zoonotic), and there was limited evidence that H-indices are a reasonable proxy for animal pathogen impact. This work addresses measures outlined by the European Commission to strengthen climate change resilience and biosecurity for infectious diseases. The results include a quantitative evaluation of infectious pathogen impact, and suggest greater impacts of human-only compared to zoonotic pathogens or scientific under-representation of zoonoses. The outputs separate high and low impact pathogens, and should be combined with other risk assessment methods relying on expert opinion or qualitative data for priority setting, or could be used to prioritise diseases for which formal risk assessments are not possible because of data gaps.


Scientific Reports | 2017

Systematic Assessment of the Climate Sensitivity of Important Human and Domestic Animals Pathogens in Europe

K. Marie McIntyre; Christian Setzkorn; Philip J. Hepworth; Serge Morand; Andrew P. Morse; Matthew Baylis

Climate change is expected to threaten human health and well-being via its effects on climate-sensitive infectious diseases, potentially changing their spatial distributions, affecting annual/seasonal cycles, or altering disease incidence and severity. Climate sensitivity of pathogens is a key indicator that diseases might respond to climate change, but the proportion of pathogens that is climate-sensitive, and their characteristics, are not known. The climate sensitivity of European human and domestic animal infectious pathogens, and the characteristics associated with sensitivity, were assessed systematically in terms of selection of pathogens and choice of literature reviewed. Sixty-three percent (N = 157) of pathogens were climate sensitive; 82% to primary drivers such as rainfall and temperature. Protozoa and helminths, vector-borne, foodborne, soilborne and waterborne transmission routes were associated with larger numbers of climate drivers. Zoonotic pathogens were more climate sensitive than human- or animal-only pathogens. Thirty-seven percent of disability-adjusted-life-years arise from human infectious diseases that are sensitive to primary climate drivers. These results help prioritize surveillance for pathogens that may respond to climate change. Although this study identifies a high degree of climate sensitivity among important pathogens, their response to climate change will be dependent on the nature of their association with climate drivers and impacts of other drivers.


BMC Veterinary Research | 2006

The time-course of a scrapie outbreak

K. Marie McIntyre; Simon Gubbins; Wilfred Goldmann; Emily Stevenson; Matthew Baylis

BackgroundBecause the incubation period of scrapie has a strong host genetic component and a dose-response relationship, it is possible that changes will occur during an outbreak, especially in the genotypes of cases, age-at-onset of disease and, perhaps, the clinical signs displayed. We investigated these factors for a large outbreak of natural scrapie, which yielded sufficient data to detect temporal trends.ResultsCases occurred mostly in two genotypes, VRQ/VRQ and VRQ/ARQ, with those early in the outbreak more likely to be of the VRQ/VRQ genotype. As the epidemic progressed, the age-at-onset of disease increased, which reflected changes in the genotypes of cases rather than changes in the age-at-onset within genotypes. Clinical signs of cases changed over the course of the outbreak. As the epidemic progressed VRQ/VRQ and VRQ/ARQ sheep were more likely to be reported with behavioural changes, while VRQ/VRQ sheep only were less likely to be reported with loss of condition.ConclusionThis study of one of the largest scrapie outbreaks in the UK allowed investigation of the effect of PrP genotype on other epidemiological parameters. Our analysis indicated that, although age-at-onset and clinical signs changed over time, the observed changes were largely, but not exclusively, driven by the time course of the PrP genotypes of cases.

Collaboration


Dive into the K. Marie McIntyre's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon Gubbins

Institute for Animal Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge