K.P. Chennazhi
Amrita Institute of Medical Sciences and Research Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by K.P. Chennazhi.
International Journal of Biological Macromolecules | 2011
K.T. Shalumon; K.H. Anulekha; Sreeja V. Nair; Shantikumar V. Nair; K.P. Chennazhi; R. Jayakumar
Sodium alginate (SA)/poly (vinyl alcohol) (PVA) fibrous mats were prepared by electrospinning technique. ZnO nanoparticles of size ∼160nm was synthesized and characterized by UV spectroscopy, dynamic light scattering (DLS), XRD and infrared spectroscopy (IR). SA/PVA electrospinning was further carried out with ZnO with different concentrations (0.5, 1, 2 and 5%) to get SA/PVA/ZnO composite nanofibers. The prepared composite nanofibers were characterized using FT-IR, XRD, TGA and SEM studies. Cytotoxicity studies performed to examine the cytocompatibility of bare and composite SA/PVA fibers indicate that those with 0.5 and 1% ZnO concentrations are less toxic where as those with higher concentrations of ZnO is toxic in nature. Cell adhesion potential of this mats were further proved by studying with L929 cells for different time intervals. Antibacterial activity of SA/PVA/ZnO mats were examined with two different bacteria strains; Staphylococcus aureus and Escherichia coli, and found that SA/PVA/ZnO mats shows antibacterial activity due to the presence of ZnO. Our results suggest that this could be an ideal biomaterial for wound dressing applications once the optimal concentration of ZnO which will give least toxicity while providing maximum antibacterial activity is identified.f.
Journal of Colloid and Interface Science | 2011
N. Sanoj Rejinold; M. Muthunarayanan; V.V. Divyarani; P.R. Sreerekha; K.P. Chennazhi; S.V. Nair; Hiroshi Tamura; R. Jayakumar
This study aims at the formulation of curcumin with biodegradable thermoresponsive chitosan-g-poly (N-vinylcaprolactam) nanoparticles (TRC-NPs) for cancer drug delivery. The spherical curcumin-loaded nanoparticles of size 220 nm were characterized, and the biological properties were studied using flow cytometry and cytotoxicity by MTT assay. The in vitro drug release was higher at above LCST compared to that at below LCST. TRC-NPs in the concentration range of 100-1000 μg/mL were non-toxic to an array of cell lines. The cellular localization of the curcumin-loaded TRC-NPs was confirmed from green fluorescence inside the cells. The time-dependent curcumin uptake by the cells was quantified by UV spectrophotometer. Curcumin-loaded TRC-NPs showed specific toxicity to cancer cells at above their LCST. Flow cytometric analysis showed increased apoptosis on PC3 compared to L929 by curcumin-loaded TRC-NPs. These results indicate that novel curcumin-loaded TRC-NPs could be a promising candidate for cancer drug delivery.
International Journal of Molecular Sciences | 2011
R. Jayakumar; K.P. Chennazhi; Sowmya Srinivasan; Shantikumar V. Nair; Tetsuya Furuike; Hiroshi Tamura
Tissue engineering/regeneration is based on the hypothesis that healthy stem/progenitor cells either recruited or delivered to an injured site, can eventually regenerate lost or damaged tissue. Most of the researchers working in tissue engineering and regenerative technology attempt to create tissue replacements by culturing cells onto synthetic porous three-dimensional polymeric scaffolds, which is currently regarded as an ideal approach to enhance functional tissue regeneration by creating and maintaining channels that facilitate progenitor cell migration, proliferation and differentiation. The requirements that must be satisfied by such scaffolds include providing a space with the proper size, shape and porosity for tissue development and permitting cells from the surrounding tissue to migrate into the matrix. Recently, chitin scaffolds have been widely used in tissue engineering due to their non-toxic, biodegradable and biocompatible nature. The advantage of chitin as a tissue engineering biomaterial lies in that it can be easily processed into gel and scaffold forms for a variety of biomedical applications. Moreover, chitin has been shown to enhance some biological activities such as immunological, antibacterial, drug delivery and have been shown to promote better healing at a faster rate and exhibit greater compatibility with humans. This review provides an overview of the current status of tissue engineering/regenerative medicine research using chitin scaffolds for bone, cartilage and wound healing applications. We also outline the key challenges in this field and the most likely directions for future development and we hope that this review will be helpful to the researchers working in the field of tissue engineering and regenerative medicine.
International Journal of Biological Macromolecules | 2011
N. Sanoj Rejinold; P.R. Sreerekha; K.P. Chennazhi; Shantikumar V. Nair; R. Jayakumar
A nano formulation of curcumin loaded biodegradable thermoresponsive chitosan-g-poly (N-isopropylacrylamide) co-polymeric nanoparticles (TRC-NPs) (150 nm) were prepared by ionic cross-linking method and characterized. The in vitro drug release was prominent at above LCST. Cytocompatibility of TRC-NPs (100-1000 μg/ml) on an array of cell line is proved by MTT assay. The drug loaded TRC-NPs showed specific toxicity on cancer cells. The cell uptake studies were confirmed by fluorescent microscopy. Flowcytometric analysis of curcumin loaded TRC-NPs showed increased apoptosis on PC3 cells. These results indicated that TRC-NPs could be a potential nanovehicle for curcumin drug delivery.
International Journal of Biological Macromolecules | 2013
B.S. Anisha; Raja Biswas; K.P. Chennazhi; R. Jayakumar
The aim of this work was to develop an antimicrobial sponge composed of chitosan, hyaluronic acid (HA) and nano silver (nAg) as a wound dressing for diabetic foot ulcers (DFU) infected with drug resistant bacteria. nAg (5-20 nm) was prepared and characterized. The nanocomposite sponges were prepared by homogenous mixing of chitosan, HA and nAg followed by freeze drying to obtain a flexible and porous structure. The prepared sponges were characterized using SEM and FT-IR. The porosity, swelling, biodegradation and haemostatic potential of the sponges were also studied. Antibacterial activity of the prepared sponges was analysed using Escherichia coli, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa and Klebsiella pneumonia. Chitosan-HA/nAg composite sponges showed potent antimicrobial property against the tested organisms. Sponges containing higher nAg (0.005%, 0.01% and 0.02%) concentrations showed antibacterial activity against MRSA. Cytotoxicity and cell attachment studies were done using human dermal fibroblast cells. The nanocomposite sponges showed a nAg concentration dependent toxicity towards fibroblast cells. Our results suggest that this nanocomposite sponges could be used as a potential material for wound dressing for DFU infected with antibiotic resistant bacteria if the optimal concentration of nAg exhibiting antibacterial action with least toxicity towards mammalian cells is identified.
International Journal of Biological Macromolecules | 2013
K.C. Kavya; R. Jayakumar; Shantikumar V. Nair; K.P. Chennazhi
A 3D nanocomposite scaffold of chitosan, gelatin and nano-silica was fabricated by lyophilization to test the hypothesis that incorporation of nano-SiO2 could produce a better candidate for bone tissue engineering compared to pure chitosan and chitosan/gelatin scaffolds. The prepared scaffold was characterized using SEM and FTIR. Porosity, density, swelling, degradation, mechanical integrity, biomineralization and protein adsorption studies, favored it in comparison to the conventional chitosan and chitosan/gelatin scaffolds. In vitro cyto-compatablity, cell attachment-proliferation, ALP activity studies performed using MG-63 cells, advocate its remarkable performance. These cumulative results indicate the prepared nanocomposite scaffold as a prospective candidate for bone tissue engineering.
Journal of Materials Science: Materials in Medicine | 2012
Ganesh Nitya; Greeshma T. Nair; Ullas Mony; K.P. Chennazhi; Shantikumar V. Nair
Polycaprolactone (PCL) is a widely accepted synthetic biodegradable polymer for tissue engineering, however its use in hard tissue engineering is limited because of its inadequate mechanical strength and low bioactivity. In this study, we used halloysite nanoclay (NC) as an inorganic filler material to prepare PCL/NC fibrous scaffolds via electrospinning technique after intercalating NC within PCL by solution intercalation method. The obtained nanofibrous mat was found to be mechanically superior to PCL fibrous scaffolds. These scaffolds allowed greater protein adsorption and enhanced mineralization when incubated in simulated body fluid. Moreover, our results indicated that human mesenchymal stem cells (hMSCs) seeded on these scaffolds were viable and could proliferate faster than in PCL scaffolds as confirmed by fluorescence and scanning electron microscopic observations. Further, osteogenic differentiation of hMSCs on nanoclay embedded scaffolds was demonstrated by an increase in alkaline phosphatase activity when compared to PCL scaffold without nanoclay. All of these results suggest the potential of PCL/NC scaffolds for bone tissue engineering.
International Journal of Biological Macromolecules | 2011
R. Jayakumar; V.V. Divyarani; K.P. Chennazhi; Hiroshi Tamura; Shantikumar V. Nair
The urge to repair and regenerate natural tissues can now be satisfactorily fulfilled by various tissue engineering approaches. Chitin and chitosan are the most widely accepted biodegradable and biocompatible materials subsequent to cellulose. The incorporation of nano ZrO(2) onto the chitin-chitosan scaffold is thought to enhance osteogenesis. Hence a nanocomposite scaffold was fabricated by lyophilization technique using chitin-chitosan with nano ZrO(2). The prepared nanocomposite scaffolds were characterized using SEM, FTIR, XRD and TGA. In addition, the swelling, degradation, biomineralization, cell viability and cell attachment of the composite scaffolds were also evaluated. The results demonstrated better swelling and controlled degradation in comparison to the control scaffold. Cell viability studies proved the non toxic nature of the nanocomposite scaffolds. Cells were found to be attached to the pore walls and spread uniformly throughout the scaffolds. All these results suggested that the developed nanocomposite scaffolds possess the prerequisites for tissue engineering scaffolds and could be used for various tissue engineering applications.
ACS Applied Materials & Interfaces | 2011
Sanoj Rejinold N; K.P. Chennazhi; Hiroshi Tamura; Shantikumar V. Nair; R. Jayakumar
In this work, we developed biodegradable chitin nanogels (CNGs) by controlled regeneration method. For multifunctionalization, we have conjugated CNGs with MPA-capped-CdTe-QDs (QD-CNGs) for the in vitro cellular localization studies. In addition, the Bovine Serum Albumin (BSA) was loaded on to QD-CNGs (BSA-QD-CNGs). The CNGs, QD-CNGs, and BSA-QD-CNGs were well-characterized by SEM and AFM, which shows that the nanogels are in the range of <100 nm. These were further characterized by FT-IR and Cyclic Voltametry. The cytocompatibility assay showed that the nanogels are nontoxic to L929, NIH-3T3, KB, MCF-7, PC3, and VERO cells. The cell uptake studies of the QD-CNGs were analyzed, which showed retention of these nanogels inside the cells (L929, PC3, and VERO). In addition, the protein loading efficiency of the nano gels has also been analyzed. Our preliminary studies reveal that these multifunctionalized nanogels could be useful for drug delivery with simultaneous imaging and biosensing.
International Journal of Biological Macromolecules | 2013
K.M. Sajesh; R. Jayakumar; Shantikumar V. Nair; K.P. Chennazhi
A polypyrrole based conducting scaffold was developed by incorporating polypyrrole-alginate (PPy-Alg) blend with chitosan using lyophilization technique and employed this composite as a substrate for bone tissue engineering. PPy-Alg blend was developed by oxidative chemical synthesis of polypyrrole using FeCl3 as oxidizing agent and characterized. The physiochemical characterization of the scaffold was done using SEM, FT-IR along with porosity measurement, swelling and in vitro degradation studies. Surface conductivity of the scaffolds was analyzed using Scanning Electrochemical microscopy (SECM). Results from cell viability and cell proliferation with MG-63 cells using Alamar blue assay confirmed the cytocompatible nature of the developed scaffold. In vitro biomineralization ability of the scaffold was assessed and thus the effectiveness of PPy-Alg/chitosan scaffold in the field of tissue engineering was evaluated.
Collaboration
Dive into the K.P. Chennazhi's collaboration.
Amrita Institute of Medical Sciences and Research Centre
View shared research outputsAmrita Institute of Medical Sciences and Research Centre
View shared research outputs