Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where K. T. Shanmugam is active.

Publication


Featured researches published by K. T. Shanmugam.


Biotechnology and Bioengineering | 2008

Eliminating Side Products and Increasing Succinate Yields in Engineered Strains of Escherichia coli C

Kaemwich Jantama; Xueli Zhang; Jonathan C. Moore; K. T. Shanmugam; Spyros A. Svoronos; Lonnie O. Ingram

Derivatives of Escherichia coli C were previously described for succinate production by combining the deletion of genes that disrupt fermentation pathways for alternative products (ldhA::FRT, adhE::FRT, ackA::FRT, focA‐pflB::FRT, mgsA, poxB) with growth‐based selection for increased ATP production. The resulting strain, KJ073, produced 1.2 mol of succinate per mol glucose in mineral salts medium with acetate, malate, and pyruvate as significant co‐products. KJ073 has been further improved by removing residual recombinase sites (FRT sites) from the chromosomal regions of gene deletion to create a strain devoid of foreign DNA, strain KJ091(ΔldhA ΔadhE ΔackA ΔfocA‐pflB ΔmgsA ΔpoxB). KJ091 was further engineered for improvements in succinate production. Deletion of the threonine decarboxylase (tdcD; acetate kinase homologue) and 2‐ketobutyrate formate‐lyase (tdcE; pyruvate formate‐lyase homologue) reduced the acetate level by 50% and increased succinate yield (1.3 mol mol−1 glucose) by almost 10% as compared to KJ091 and KJ073. Deletion of two genes involved in oxaloacetate metabolism, aspartate aminotransferase (aspC) and the NAD+‐linked malic enzyme (sfcA) (KJ122) significantly increased succinate yield (1.5 mol mol−1 glucose), succinate titer (700 mM), and average volumetric productivity (0.9 g L−1 h−1). Residual pyruvate and acetate were substantially reduced by further deletion of pta encoding phosphotransacetylase to produce KJ134 (ΔldhA ΔadhE ΔfocA‐pflB ΔmgsA ΔpoxB ΔtdcDE ΔcitF ΔaspC ΔsfcA Δpta‐ackA). Strains KJ122 and KJ134 produced near theoretical yields of succinate during simple, anaerobic, batch fermentations using mineral salts medium. Both may be useful as biocatalysts for the commercial production of succinate. Biotechnol. Bioeng.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli

Xueli Zhang; Kaemwich Jantama; Jonathan C. Moore; Laura R. Jarboe; K. T. Shanmugam; Lonnie O. Ingram

During metabolic evolution to improve succinate production in Escherichia coli strains, significant changes in cellular metabolism were acquired that increased energy efficiency in two respects. The energy-conserving phosphoenolpyruvate (PEP) carboxykinase (pck), which normally functions in the reverse direction (gluconeogenesis; glucose repressed) during the oxidative metabolism of organic acids, evolved to become the major carboxylation pathway for succinate production. Both PCK enzyme activity and gene expression levels increased significantly in two stages because of several mutations during the metabolic evolution process. High-level expression of this enzyme-dominated CO2 fixation and increased ATP yield (1 ATP per oxaloacetate). In addition, the native PEP-dependent phosphotransferase system for glucose uptake was inactivated by a mutation in ptsI. This glucose transport function was replaced by increased expression of the GalP permease (galP) and glucokinase (glk). Results of deleting individual transport genes confirmed that GalP served as the dominant glucose transporter in evolved strains. Using this alternative transport system would increase the pool of PEP available for redox balance. This change would also increase energy efficiency by eliminating the need to produce additional PEP from pyruvate, a reaction that requires two ATP equivalents. Together, these changes converted the wild-type E. coli fermentation pathway for succinate into a functional equivalent of the native pathway that nature evolved in succinate-producing rumen bacteria.


Applied and Environmental Microbiology | 2007

Construction of an Escherichia coli K-12 Mutant for Homoethanologenic Fermentation of Glucose or Xylose without Foreign Genes

Youngnyun Kim; Lonnie O. Ingram; K. T. Shanmugam

ABSTRACT Conversion of lignocellulosic feedstocks to ethanol requires microorganisms that effectively ferment both hexose and pentose sugars. Towards this goal, recombinant organisms have been developed in which heterologous genes were added to platform organisms such as Saccharomyces cerevisiae, Zymomonas mobilis, and Escherichia coli. Using a novel approach that relies only on native enzymes, we have developed a homoethanologenic alternative, Escherichia coli strain SE2378. This mutant ferments glucose or xylose to ethanol with a yield of 82% under anaerobic conditions. An essential mutation in this mutant was mapped within the pdh operon (pdhR aceEF lpd), which encodes components of the pyruvate dehydrogenase complex. Anaerobic ethanol production by this mutant is apparently the result of a novel pathway that combines the activities of pyruvate dehydrogenase (typically active during aerobic, oxidative metabolism) with the fermentative alcohol dehydrogenase.


Applied Microbiology and Biotechnology | 1995

Direct isolation of functional genes encoding cellulases from the microbial consortia in a thermophilic, anaerobic digester maintained on lignocellulose

F. G. Healy; R. M. Ray; H. C. Aldrich; A. C. Wilkie; Lonnie O. Ingram; K. T. Shanmugam

Gene libraries (“zoolibraries”) were constructed in Escherichia coli using DNA isolated from the mixed liquor of thermophilic, anaerobic digesters, which were in continuous operation with lignocellulosic feedstocks for over 10 years. Clones expressing cellulase and xylosidase were readily recovered from these libraries. Four clones that hydrolyzed carboxymethylcellulose and methylumbelliferyl-β-d-cellobiopyranoside were characterized. All four cellulases exhibited temperature optima (60–65° C) and pH optima (pH 6–7) in accordance with conditions of the enrichment. The DNA sequence of the insert in one clone (plasmid pFGH1) was determined. This plasmid encoded an endoglucanase (celA) and part of a putative β-glucosidase (celB), both of which were distinctly different from all previously reported homologues. CelA protein shared limited homology with members of the A3 subfamily of cellulases, being similar to endoglucanase C from Clostridium thermocellum (40% identity). The N-terminal part of CelB protein was most similar to β-glucosidase from Pseudomonas fluorescens subsp. cellulosa (28% homology). The use of zoolibraries constructed from natural or laboratory enrichment cultures offers the potential to discover many new enzymes for biotechnological applications.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Engineering the metabolism of Escherichia coli W3110 for the conversion of sugar to redox-neutral and oxidized products: Homoacetate production

T. B. Causey; S. Zhou; K. T. Shanmugam; Lonnie O. Ingram

Microbial processes for commodity chemicals have focused on reduced products and anaerobic conditions where substrate loss to cell mass and CO2 are minimal and product yields are high. To facilitate expansion into more oxidized chemicals, Escherichia coli W3110 was genetically engineered for acetate production by using an approach that combines attributes of fermentative and oxidative metabolism (rapid growth, external electron acceptor) into a single biocatalyst. The resulting strain (TC36) converted 333 mM glucose into 572 mM acetate, a product of equivalent oxidation state, in 18 h. With excess glucose, a maximum of 878 mM acetate was produced. Strain TC36 was constructed by sequentially assembling deletions that inactivated oxidative phosphorylation (ΔatpFH), disrupted the cyclic function of the tricarboxylic acid pathway (ΔsucA), and eliminated native fermentation pathways (ΔfocA-pflB ΔfrdBC ΔldhA ΔadhE). These mutations minimized the loss of substrate carbon and the oxygen requirement for redox balance. Although TC36 produces only four ATPs per glucose, this strain grows well in mineral salts medium and has no auxotrophic requirement. Glycolytic flux in TC36 (0.3 μmol⋅min−1⋅mg−1 protein) was twice that of the parent. Higher flux was attributed to a deletion of membrane-coupling subunits in (F1F0)H+-ATP synthase that inactivated ATP synthesis while retaining cytoplasmic F1-ATPase activity. The effectiveness of this deletion in stimulating flux provides further evidence for the importance of ATP supply and demand in the regulation of central metabolism. Derivatives of TC36 may prove useful for the commercial production of a variety of commodity chemicals.


Applied and Environmental Microbiology | 2009

Silencing of NADPH-Dependent Oxidoreductase Genes (yqhD and dkgA) in Furfural-Resistant Ethanologenic Escherichia coli

Elliot N. Miller; Laura R. Jarboe; Lorraine P. Yomano; Sean W. York; K. T. Shanmugam; Lonnie O. Ingram

ABSTRACT Low concentrations of furfural are formed as a side product during the dilute acid hydrolysis of hemicellulose. Growth is inhibited by exposure to furfural but resumes after the complete reduction of furfural to the less toxic furfuryl alcohol. Growth-based selection was used to isolate a furfural-resistant mutant of ethanologenic Escherichia coli LY180, designated strain EMFR9. Based on mRNA expression levels in the parent and mutant in response to furfural challenge, genes encoding 12 oxidoreductases were found to vary by more than twofold (eight were higher in EMFR9; four were higher in the parent). All 12 genes were cloned. When expressed from plasmids, none of the eight genes in the first group increased furfural tolerance in the parent (LY180). Expression of three of the silenced genes (yqhD, dkgA, and yqfA) in EMFR9 was found to decrease furfural tolerance compared to that in the parent. Purified enzymes encoded by yqhD and dkgA were shown to have NADPH-dependent furfural reductase activity. Both exhibited low Km values for NADPH (8 μM and 23 μM, respectively), similar to those of biosynthetic reactions. Furfural reductase activity was not associated with yqfA. Deleting yqhD and dkgA in the parent (LY180) increased furfural tolerance, but not to the same extent observed in the mutant EMFR9. Together, these results suggest that the process of reducing furfural by using an enzyme with a low Km for NADPH rather than a direct inhibitory action is the primary cause for growth inhibition by low concentrations of furfural.


BioMed Research International | 2010

Metabolic Engineering for Production of Biorenewable Fuels and Chemicals: Contributions of Synthetic Biology

Laura R. Jarboe; Xueli Zhang; Xuan Wang; Jonathan C. Moore; K. T. Shanmugam; Lonnie O. Ingram

Production of fuels and chemicals through microbial fermentation of plant material is a desirable alternative to petrochemical-based production. Fermentative production of biorenewable fuels and chemicals requires the engineering of biocatalysts that can quickly and efficiently convert sugars to target products at a cost that is competitive with existing petrochemical-based processes. It is also important that biocatalysts be robust to extreme fermentation conditions, biomass-derived inhibitors, and their target products. Traditional metabolic engineering has made great advances in this area, but synthetic biology has contributed and will continue to contribute to this field, particularly with next-generation biofuels. This work reviews the use of metabolic engineering and synthetic biology in biocatalyst engineering for biorenewable fuels and chemicals production, such as ethanol, butanol, acetate, lactate, succinate, alanine, and xylitol. We also examine the existing challenges in this area and discuss strategies for improving biocatalyst tolerance to chemical inhibitors.


Journal of Bacteriology | 2001

Engineering a Homo-Ethanol Pathway in Escherichia coli: Increased Glycolytic Flux and Levels of Expression of Glycolytic Genes during Xylose Fermentation

Han Tao; Ramón González González; Alfredo Martinez; Maria E. Rodriguez; Lonnie O. Ingram; James F. Preston; K. T. Shanmugam

Replacement of the native fermentation pathway in Escherichia coli B with a homo-ethanol pathway from Zymomonas mobilis (pdc and adhB genes) resulted in a 30 to 50% increase in growth rate and glycolytic flux during the anaerobic fermentation of xylose. Gene array analysis was used as a tool to investigate differences in expression levels for the 30 genes involved in xylose catabolism in the parent (strain B) and the engineered strain (KO11). Of the 4,290 total open reading frames, only 8% were expressed at a significantly higher level in KO11 (P < 0.05). In contrast, over half of the 30 genes involved in the catabolism of xylose to pyruvate were expressed at 1.5-fold- to 8-fold-higher levels in KO11. For 14 of the 30 genes, higher expression was statistically significant at the 95% confidence level (xylAB, xylE, xylFG, xylR, rpiA, rpiB, pfkA, fbaA, tpiA, gapA, pgk, and pykA) during active fermentation (6, 12, and 24 h). Values at single time points for only four of these genes (eno, fbaA, fbaB, and talA) were higher in strain B than in KO11. The relationship between changes in mRNA (cDNA) levels and changes in specific activities was verified for two genes (xylA and xylB) with good agreement. In KO11, expression levels and activities were threefold higher than in strain B for xylose isomerase (xylA) and twofold higher for xylulokinase (xylB). Increased expression of genes involved in xylose catabolism is proposed as the basis for the increase in growth rate and glycolytic flux in ethanologenic KO11.


Applied and Environmental Microbiology | 2009

Furfural Inhibits Growth by Limiting Sulfur Assimilation in Ethanologenic Escherichia coli Strain LY180

Elliot N. Miller; Laura R. Jarboe; Peter C. Turner; Priti Pharkya; Lorraine P. Yomano; Sean W. York; David Nunn; K. T. Shanmugam; Lonnie O. Ingram

ABSTRACT A wide variety of commercial products can be potentially made from monomeric sugars produced by the dilute acid hydrolysis of lignocellulosic biomass. However, this process is accompanied by side products such as furfural that hinder microbial growth and fermentation. To investigate the mechanism of furfural inhibition, mRNA microarrays of an ethanologenic strain of Escherichia coli (LY180) were compared immediately prior to and 15 min after a moderate furfural challenge. Expression of genes and regulators associated with the biosynthesis of cysteine and methionine was increased by furfural, consistent with a limitation of these critical metabolites. This was in contrast to a general stringent response and decreased expression of many other biosynthetic genes. Of the 20 amino acids individually tested as supplements (100 μM each), cysteine and methionine were the most effective in increasing furfural tolerance with serine (precursor of cysteine), histidine, and arginine of lesser benefit. Supplementation with other reduced sulfur sources such as d-cysteine and thiosulfate also increased furfural tolerance. In contrast, supplementation with taurine, a sulfur source that requires 3 molecules of NADPH for sulfur assimilation, was of no benefit. Furfural tolerance was also increased by inserting a plasmid encoding pntAB, a cytoplasmic NADH/NADPH transhydrogenase. Based on these results, a model is proposed for the inhibition of growth in which the reduction of furfural by YqhD, an enzyme with a low Km for NADPH, depletes NADPH sufficiently to limit the assimilation of sulfur into amino acids (cysteine and methionine) by CysIJ (sulfite reductase).


Journal of Bacteriology | 2008

Dihydrolipoamide Dehydrogenase Mutation Alters the NADH Sensitivity of Pyruvate Dehydrogenase Complex of Escherichia coli K-12

Youngnyun Kim; Lonnie O. Ingram; K. T. Shanmugam

Under anaerobic growth conditions, an active pyruvate dehydrogenase (PDH) is expected to create a redox imbalance in wild-type Escherichia coli due to increased production of NADH (>2 NADH molecules/glucose molecule) that could lead to growth inhibition. However, the additional NADH produced by PDH can be used for conversion of acetyl coenzyme A into reduced fermentation products, like alcohols, during metabolic engineering of the bacterium. E. coli mutants that produced ethanol as the main fermentation product were recently isolated as derivatives of an ldhA pflB double mutant. In all six mutants tested, the mutation was in the lpd gene encoding dihydrolipoamide dehydrogenase (LPD), a component of PDH. Three of the LPD mutants carried an H322Y mutation (lpd102), while the other mutants carried an E354K mutation (lpd101). Genetic and physiological analysis revealed that the mutation in either allele supported anaerobic growth and homoethanol fermentation in an ldhA pflB double mutant. Enzyme kinetic studies revealed that the LPD(E354K) enzyme was significantly less sensitive to NADH inhibition than the native LPD. This reduced NADH sensitivity of the mutated LPD was translated into lower sensitivity of the appropriate PDH complex to NADH inhibition. The mutated forms of the PDH had a 10-fold-higher K(i) for NADH than the native PDH. The lower sensitivity of PDH to NADH inhibition apparently increased PDH activity in anaerobic E. coli cultures and created the new ethanologenic fermentation pathway in this bacterium. Analogous mutations in the LPD of other bacteria may also significantly influence the growth and physiology of the organisms in a similar fashion.

Collaboration


Dive into the K. T. Shanmugam's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xueli Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xuan Wang

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge