Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lorraine P. Yomano is active.

Publication


Featured researches published by Lorraine P. Yomano.


Biotechnology and Bioengineering | 1998

Metabolic engineering of bacteria for ethanol production

Lonnie O. Ingram; P. F. Gomez; Xiaokuang Lai; Mohammed Moniruzzaman; Brent E. Wood; Lorraine P. Yomano; Sean W. York

Technologies are available which will allow the conversion of lignocellulose into fuel ethanol using genetically engineered bacteria. Assembling these into a cost-effective process remains a challenge. Our work has focused primarily on the genetic engineering of enteric bacteria using a portable ethanol production pathway. Genes encoding Zymomonas mobilis pyruvate decarboxylase and alcohol dehydrogenase have been integrated into the chromosome of Escherichia coli B to produce strain KO11 for the fermentation of hemicellulose-derived syrups. This organism can efficiently ferment all hexose and pentose sugars present in the polymers of hemicellulose. Klebsiella oxytoca M5A1 has been genetically engineered in a similar manner to produce strain P2 for ethanol production from cellulose. This organism has the native ability to ferment cellobiose and cellotriose, eliminating the need for one class of cellulase enzymes. The optimal pH for cellulose fermentation with this organism (pH 5.0-5.5) is near that of fungal cellulases. The general approach for the genetic engineering of new biocatalysts has been most successful with enteric bacteria thus far. However, this approach may also prove useful with Gram-positive bacteria which have other important traits for lignocellulose conversion. Many opportunities remain for further improvements in the biomass to ethanol processes. These include the development of enzyme-based systems which eliminate the need for dilute acid hydrolysis or other pretreatments, improvements in existing pretreatments for enzymatic hydrolysis, process improvements to increase the effective use of cellulase and hemicellulase enzymes, improvements in rates of ethanol production, decreased nutrient costs, increases in ethanol concentrations achieved in biomass beers, increased resistance of the biocatalysts to lignocellulosic-derived toxins, etc. To be useful, each of these improvements must result in a decrease in the cost for ethanol production. Copyright 1998 John Wiley & Sons, Inc.


Biotechnology Progress | 1999

Enteric bacterial catalysts for fuel ethanol production

Lonnie O. Ingram; H. C. Aldrich; A. C. C. Borges; T. B. Causey; Alfredo Martinez; Fernando Morales; Alif Saleh; S. A. Underwood; Lorraine P. Yomano; Sean W. York; Jesus Zaldivar; Shengde Zhou

The technology is available to produce fuel ethanol from renewable lignocellulosic biomass. The current challenge is to assemble the various process options into a commercial venture and begin the task of incremental improvement. Current process designs for lignocellulose are far more complex than grain to ethanol processes. This complexity results in part from the complexity of the substrate and the biological limitations of the catalyst. Our work at the University of Florida has focused primarily on the genetic engineering of Enteric bacteria using genes encoding Zymomonas mobilis pyruvate decarboxylase and alcohol dehydrogenase. These two genes have been assembled into a portable ethanol production cassette, the PET operon, and integrated into the chromosome of Escherichia coli B for use with hemicellulose‐derived syrups. The resulting strain, KO11, produces ethanol efficiently from all hexose and pentose sugars present in the polymers of hemicellulose. By using the same approach, we integrated the PET operon into the chromosome of Klebsiella oxytoca to produce strain P2 for use in the simultaneous saccharification and fermentation (SSF) process for cellulose. Strain P2 has the native ability to ferment cellobiose and cellotriose, eliminating the need for one class of cellulase enzymes. Recently, the ability to produce and secrete high levels of endoglucanase has also been added to strain P2, further reducing the requirement for fungal cellulase. The general approach for the genetic engineering of new biocatalysts using the PET operon has been most successful with Enteric bacteria but was also extended to Gram positive bacteria, which have other useful traits for lignocellulose conversion. Many opportunities remain for further improvements in these biocatalysts as we proceed toward the development of single organisms that can be used for the efficient fermentation of both hemicellulosic and cellulosic substrates.


Journal of Industrial Microbiology & Biotechnology | 1998

Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production.

Lorraine P. Yomano; Sean W. York; Lonnie O. Ingram

Genetically engineered Escherichia coli KO11 is capable of efficiently producing ethanol from all sugar constituents of lignocellulose but lacks the high ethanol tolerance of yeasts currently used for commercial starch-based ethanol processes. Using an enrichment method which selects alternatively for ethanol tolerance during growth in broth and for ethanol production on solid medium, mutants of KO11 with increased ethanol tolerance were isolated which can produce more than 60 g ethanol L−1 from xylose in 72 h. Ethanol concentrations and yields achieved by the LY01 mutant with xylose exceed those reported for recombinant strains of Saccharomyces and Zymomonas mobilis, both of which have a high native ethanol tolerance.


Advances in Biochemical Engineering \/ Biotechnology | 2007

Development of Ethanologenic Bacteria

Laura R. Jarboe; Tammy Bohannon Grabar; Lorraine P. Yomano; K. T. Shanmugan; Lonnie O. Ingram

The utilization of lignocellulosic biomass as a petroleum alternative faces many challenges. This work reviews recent progress in the engineering of Escherichia coli and Klebsiella oxytoca to produce ethanol from biomass with minimal nutritional supplementation. A combination of directed engineering and metabolic evolution has resulted in microbial biocatalysts that produce up to 45 g L(-1) ethanol in 48 h in a simple mineral salts medium, and convert various lignocellulosic materials to ethanol. Mutations contributing to ethanologenesis are discussed. The ethanologenic biocatalyst design approach was applied to other commodity chemicals, including optically pure D: (-)- and L: (+)-lactic acid, succinate and L: -alanine with similar success. This review also describes recent progress in growth medium development, the reduction of hemicellulose hydrolysate toxicity and reduction of the demand for fungal cellulases.


Applied and Environmental Microbiology | 2009

Silencing of NADPH-Dependent Oxidoreductase Genes (yqhD and dkgA) in Furfural-Resistant Ethanologenic Escherichia coli

Elliot N. Miller; Laura R. Jarboe; Lorraine P. Yomano; Sean W. York; K. T. Shanmugam; Lonnie O. Ingram

ABSTRACT Low concentrations of furfural are formed as a side product during the dilute acid hydrolysis of hemicellulose. Growth is inhibited by exposure to furfural but resumes after the complete reduction of furfural to the less toxic furfuryl alcohol. Growth-based selection was used to isolate a furfural-resistant mutant of ethanologenic Escherichia coli LY180, designated strain EMFR9. Based on mRNA expression levels in the parent and mutant in response to furfural challenge, genes encoding 12 oxidoreductases were found to vary by more than twofold (eight were higher in EMFR9; four were higher in the parent). All 12 genes were cloned. When expressed from plasmids, none of the eight genes in the first group increased furfural tolerance in the parent (LY180). Expression of three of the silenced genes (yqhD, dkgA, and yqfA) in EMFR9 was found to decrease furfural tolerance compared to that in the parent. Purified enzymes encoded by yqhD and dkgA were shown to have NADPH-dependent furfural reductase activity. Both exhibited low Km values for NADPH (8 μM and 23 μM, respectively), similar to those of biosynthetic reactions. Furfural reductase activity was not associated with yqfA. Deleting yqhD and dkgA in the parent (LY180) increased furfural tolerance, but not to the same extent observed in the mutant EMFR9. Together, these results suggest that the process of reducing furfural by using an enzyme with a low Km for NADPH rather than a direct inhibitory action is the primary cause for growth inhibition by low concentrations of furfural.


Applied and Environmental Microbiology | 2005

Enhanced Trehalose Production Improves Growth of Escherichia coli under Osmotic Stress

Jeremy E. Purvis; Lorraine P. Yomano; Lonnie O. Ingram

ABSTRACT The biosynthesis of trehalose has been previously shown to serve as an important osmoprotectant and stress protectant in Escherichia coli. Our results indicate that overproduction of trehalose (integrated lacI-Ptac-otsBA) above the level produced by the native regulatory system can be used to increase the growth of E. coli in M9-2% glucose medium at 37°C to 41°C and to increase growth at 37°C in the presence of a variety of osmotic-stress agents (hexose sugars, inorganic salts, and pyruvate). Smaller improvements were noted with xylose and some fermentation products (ethanol and pyruvate). Based on these results, overproduction of trehalose may be a useful trait to include in biocatalysts engineered for commodity chemicals.


Applied and Environmental Microbiology | 2009

Furfural Inhibits Growth by Limiting Sulfur Assimilation in Ethanologenic Escherichia coli Strain LY180

Elliot N. Miller; Laura R. Jarboe; Peter C. Turner; Priti Pharkya; Lorraine P. Yomano; Sean W. York; David Nunn; K. T. Shanmugam; Lonnie O. Ingram

ABSTRACT A wide variety of commercial products can be potentially made from monomeric sugars produced by the dilute acid hydrolysis of lignocellulosic biomass. However, this process is accompanied by side products such as furfural that hinder microbial growth and fermentation. To investigate the mechanism of furfural inhibition, mRNA microarrays of an ethanologenic strain of Escherichia coli (LY180) were compared immediately prior to and 15 min after a moderate furfural challenge. Expression of genes and regulators associated with the biosynthesis of cysteine and methionine was increased by furfural, consistent with a limitation of these critical metabolites. This was in contrast to a general stringent response and decreased expression of many other biosynthetic genes. Of the 20 amino acids individually tested as supplements (100 μM each), cysteine and methionine were the most effective in increasing furfural tolerance with serine (precursor of cysteine), histidine, and arginine of lesser benefit. Supplementation with other reduced sulfur sources such as d-cysteine and thiosulfate also increased furfural tolerance. In contrast, supplementation with taurine, a sulfur source that requires 3 molecules of NADPH for sulfur assimilation, was of no benefit. Furfural tolerance was also increased by inserting a plasmid encoding pntAB, a cytoplasmic NADH/NADPH transhydrogenase. Based on these results, a model is proposed for the inhibition of growth in which the reduction of furfural by YqhD, an enzyme with a low Km for NADPH, depletes NADPH sufficiently to limit the assimilation of sulfur into amino acids (cysteine and methionine) by CysIJ (sulfite reductase).


Microbiology | 1995

Protein burden in Zymomonas mobilis: negative flux and growth control due to overproduction of glycolytic enzymes.

Jacky L. Snoep; Lorraine P. Yomano; Hans V. Westerhoff; Lonnie O. Ingram

Increasing the expression of various glycolytic operons in Zymomonas mobilis caused a significant decrease rather than increase in the glycolytic flux and growth rate. Because the relative decrease depended on the amount of overexpressed protein, and was independent of which enzyme was overexpressed, we attributed it to a protein burden effect. More specifically, we examined if the decrease in glycolytic flux could be explained by a decreased concentration of other glycolytic enzymes (for which glucokinase was used as a marker enzyme). Using the summation theorem of metabolic control theory we predicted the extent of this protein burden effect. The predictions were in good agreement with the experimental observations. This suggests that the negative flux control is caused either by a simple competition of the overexpressed gene with the expression of all other genes or by simple dilution. Furthermore, we determined the implications of protein burden for the determination of the extent to which an enzyme limits a flux. We conclude that a protein burden can cause a significant underestimation of the flux control coefficient, especially if the enzyme under investigation is a highly expressed enzyme.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Engineering furfural tolerance in Escherichia coli improves the fermentation of lignocellulosic sugars into renewable chemicals

Xuan Wang; Lorraine P. Yomano; James Y. Lee; Sean W. York; Huabao Zheng; M.T. Mullinnix; K. T. Shanmugam; Lonnie O. Ingram

Pretreatments such as dilute acid at elevated temperature are effective for the hydrolysis of pentose polymers in hemicellulose and also increase the access of enzymes to cellulose fibers. However, the fermentation of resulting syrups is hindered by minor reaction products such as furfural from pentose dehydration. To mitigate this problem, four genetic traits have been identified that increase furfural tolerance in ethanol-producing Escherichia coli LY180 (strain W derivative): increased expression of fucO, ucpA, or pntAB and deletion of yqhD. Plasmids and integrated strains were used to characterize epistatic interactions among traits and to identify the most effective combinations. Furfural resistance traits were subsequently integrated into the chromosome of LY180 to construct strain XW129 (LY180 ΔyqhD ackA::PyadC′fucO-ucpA) for ethanol. This same combination of traits was also constructed in succinate biocatalysts (Escherichia coli strain C derivatives) and found to increase furfural tolerance. Strains engineered for resistance to furfural were also more resistant to the mixture of inhibitors in hemicellulose hydrolysates, confirming the importance of furfural as an inhibitory component. With resistant biocatalysts, product yields (ethanol and succinate) from hemicellulose syrups were equal to control fermentations in laboratory media without inhibitors. The combination of genetic traits identified for the production of ethanol (strain W derivative) and succinate (strain C derivative) may prove useful for other renewable chemicals from lignocellulosic sugars.


Applied and Environmental Microbiology | 2002

Genetic Changes To Optimize Carbon Partitioning between Ethanol and Biosynthesis in Ethanologenic Escherichia coli

S. A. Underwood; Shengde Zhou; T. B. Causey; Lorraine P. Yomano; K. T. Shanmugam; Lonnie O. Ingram

ABSTRACT The production of ethanol from xylose by ethanologenic Escherichia coli strain KO11 was improved by adding various medium supplements (acetate, pyruvate, and acetaldehyde) that prolonged the growth phase by increasing cell yield and volumetric productivity (approximately twofold). Although added pyruvate and acetaldehyde were rapidly metabolized, the benefit of these additives continued throughout fermentation. Both additives increased the levels of extracellular acetate through different mechanisms. Since acetate can be reversibly converted to acetyl coenzyme A (acetyl-CoA) by acetate kinase and phosphotransacetylase, the increase in cell yield caused by each of the three supplements is proposed to result from an increase in the pool of acetyl-CoA. A similar benefit was obtained by inactivation of acetate kinase (ackA), reducing the production of acetate (and ATP) and sparing acetyl-CoA for biosynthetic needs. Inactivation of native E. coli alcohol-aldehyde dehydrogenase (adhE), which uses acetyl-CoA as an electron acceptor, had no beneficial effect on growth, which was consistent with a minor role for this enzyme during ethanol production. Growth of KO11 on xylose appears to be limited by the partitioning of carbon skeletons into biosynthesis rather than the level of ATP. Changes in acetyl-CoA production and consumption provide a useful approach to modulate carbon partitioning. Together, these results demonstrate that xylose fermentation to ethanol can be improved in KO11 by redirecting small amounts of pyruvate away from fermentation products and into biosynthesis. Though negligible with respect to ethanol yield, these small changes in carbon partitioning reduced the time required to complete the fermentation of 9.1% xylose in 1% corn steep liquor medium from over 96 h to less than 72 h.

Collaboration


Dive into the Lorraine P. Yomano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xuan Wang

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge