Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where K. W. Michael Siu is active.

Publication


Featured researches published by K. W. Michael Siu.


Molecular & Cellular Proteomics | 2008

Discovery and Verification of Head-and-neck Cancer Biomarkers by Differential Protein Expression Analysis Using iTRAQ Labeling, Multidimensional Liquid Chromatography, and Tandem Mass Spectrometry

Ranju Ralhan; Leroi V. DeSouza; Ajay Matta; Satyendra C. Tripathi; Shaun Ghanny; Siddartha Datta Gupta; Sudhir Bahadur; K. W. Michael Siu

Multidimensional LC-MS/MS has been used for the analysis of biological samples labeled with isobaric mass tags for relative and absolute quantitation (iTRAQ) to identify proteins that are differentially expressed in human head-and-neck squamous cell carcinomas (HNSCCs) in relation to non-cancerous head-and-neck tissues (controls) for cancer biomarker discovery. Fifteen individual samples (cancer and non-cancerous tissues) were compared against a pooled non-cancerous control (prepared by pooling equal amounts of proteins from six non-cancerous tissues) in five sets by on-line and off-line separation. We identified 811 non-redundant proteins in HNSCCs, including structural proteins, signaling components, enzymes, receptors, transcription factors, and chaperones. A panel of proteins showing consistent differential expression in HNSCC relative to the non-cancerous controls was discovered. Some of the proteins include stratifin (14-3-3σ); YWHAZ (14-3-3ζ); three calcium-binding proteins of the S100 family, S100-A2, S100-A7 (psoriasin), and S100-A11 (calgizarrin); prothymosin α (PTHA); l-lactate dehydrogenase A chain; glutathione S-transferase Pi; APC-binding protein EB1; and fascin. Peroxiredoxin2, carbonic anhydrase I, flavin reductase, histone H3, and polybromo-1D (BAF180) were underexpressed in HNSCCs. A panel of the three best performing biomarkers, YWHAZ, stratifin, and S100-A7, achieved a sensitivity of 0.92 and a specificity of 0.91 in discriminating cancerous from non-cancerous head-and-neck tissues. Verification of differential expression of YWHAZ, stratifin, and S100-A7 proteins in clinical samples of HNSCCs and paired and non-paired non-cancerous tissues by immunohistochemistry, immunoblotting, and RT-PCR confirmed their overexpression in head-and-neck cancer. Verification of YWHAZ, stratifin, and S100-A7 in an independent set of HNSCCs achieved a sensitivity of 0.92 and a specificity of 0.87 in discriminating cancerous from non-cancerous head-and-neck tissues, thereby confirming their overexpressions and utility as credible cancer biomarkers.


Journal of Proteome Research | 2008

Multiple Reaction Monitoring of mTRAQ-Labeled Peptides Enables Absolute Quantification of Endogenous Levels of a Potential Cancer Marker in Cancerous and Normal Endometrial Tissues

Leroi V. DeSouza; Adrian M. Taylor; Wei Li; Marjorie S. Minkoff; Alexander D. Romaschin; Terence J. Colgan; K. W. Michael Siu

While iTRAQ analyses have proved invaluable for the discovery of potential cancer markers, two outstanding issues that remained were its ineffectiveness to consistently detect specific proteins of interest in a complex sample and to determine the absolute abundance of those proteins. These have been addressed by availability of the mTRAQ reagents (Applied Biosystems, Inc., Foster City, CA) a nonisobaric variant of iTRAQ. We have applied this newly emerging technique to quantify one of our potential markers for endometrial cancer, viz. pyruvate kinase M1/M2. The mTRAQ methodolgy relies on multiple reaction monitoring (MRM) to target tryptic peptides from the protein of interest, thus, ensuring maximal opportunity for detection, while the nonisobaric tags enable specific quantification of each version of the labeled peptides through unique MRM transitions conferred by the labels. Known amounts of synthetic peptides tagged with one of the two available mTRAQ labels, when used as quantification standards in a mixture with the oppositely labeled tryptically digested sample, permit determination of the absolute amounts of the corresponding protein in the sample. The ability to label the sample and reference peptides with either one of the two possible combinations is an inherent advantage of this method, as it provides a means for verification of the reported ratios. In this study, we determined that the amount of pyruvate kinase present in the homogenate from a biopsied EmCa tissue sample was 85 nmol/g of total proteins, while the equivalent concentration in the nonmalignant controls was 21-26 nmol/g of total proteins. This approximately 4-fold higher amount of pyruvate kinase in the cancer sample was further confirmed not only by a direct comparison between the cancer sample and one of the nonmalignant controls, but also independently by an enzyme-linked immunosorbant assay (ELISA). Additionally, the 4-fold higher level of pyruvate kinase amount in the cancer homogenate reported in this study is considerably higher than the 2-fold higher ratio reported across 20 cancer samples in the discovery phase with the iTRAQ technique, suggesting that there exists a possibility that the dynamic range of ratios determined by the iTRAQ technique may have been compressed.


Journal of the American Society for Mass Spectrometry | 2001

Formation of molecular radical cations of enkephalin derivatives via collision-induced dissociation of electrospray-generated copper (II) complex ions of amines and peptides

Ivan K. Chu; Christopher F. Rodriguez; Alan C. Hopkinson; K. W. Michael Siu; Tai-Chu Lau

Fragmentation of some electrospray-generated complex ions, [63CuII(amine)M].2+, where M is an enkephalin derivative, produces the radical cation of the peptide, M.+. This ion has only been observed when M contains a tyrosyl or tryptophanyl residue plus a basic residue, typically arginyl or lysyl. A typical viable amine is diethylenetriamine. Collision-induced dissociation (CID) of the M.+ ion yields a prominent [M − 106].+ product ion for tyrosine-containing peptides, and a prominent [M − 129].+ ion for a tryptophan-containing peptide. These fragment ions are formed as a result of elimination of the tyrosyl and tryptophanyl side chains. Dissociation of these ions, in turn, produces second generation product ions, many of which are typically absent in the fragmentation of protonated peptide ions. Structures for some of these unusual ions are proposed.


Molecular & Cellular Proteomics | 2007

Endometrial Carcinoma Biomarker Discovery and Verification Using Differentially Tagged Clinical Samples with Multidimensional Liquid Chromatography and Tandem Mass Spectrometry

Leroi V. DeSouza; Jörg Grigull; Shaun Ghanny; Valérie Dubé; Alexander D. Romaschin; Terence J. Colgan; K. W. Michael Siu

The utility of differentially expressed proteins discovered and identified in an earlier study (DeSouza, L., Diehl, G., Rodrigues, M. J., Guo, J., Romaschin, A. D., Colgan, T. J., and Siu, K. W. M. (2005) Search for cancer markers from endometrial tissues using differentially labeled tags iTRAQ and cleavable ICAT with multidimensional liquid chromatography and tandem mass spectrometry. J. Proteome Res. 4, 377–386) to discriminate malignant and benign endometrial tissue samples was verified in a 40-sample iTRAQ (isobaric tags for relative and absolute quantitation) labeling study involving normal proliferative and secretory samples and Types I and II endometrial cancer samples. None of these proteins had the sensitivity and specificity to be used individually to discriminate between normal and cancer samples. However, a panel of pyruvate kinase, chaperonin 10, and α1-antitrypsin achieved the best results with a sensitivity, specificity, predictive value, and positive predictive value of 0.95 each in a logistic regression analysis. In addition, three new potential markers were discovered, whereas two other proteins showed promising trends but were not detected in sufficient numbers of samples to permit statistical validation. Differential expressions of some of these candidate biomarkers were independently verified using immunohistochemistry.


Journal of the American Chemical Society | 2008

Are the Radical Centers in Peptide Radical Cations Mobile? The Generation, Tautomerism, and Dissociation of Isomeric α-Carbon-Centered Triglycine Radical Cations in the Gas Phase

Ivan K. Chu; Junfang Zhao; Minjie Xu; Shiu On Siu; Alan C. Hopkinson; K. W. Michael Siu

The mobility of the radical center in three isomeric triglycine radical cations[G(*)GG](+), [GG(*)G](+), and [GGG(*)](+) has been investigated theoretically via density functional theory (DFT) and experimentally via tandem mass spectrometry. These radical cations were generated by collision-induced dissociations (CIDs) of Cu(II)-containing ternary complexes that contain the tripeptides YGG, GYG, and GGY, respectively (G and Y are the glycine and tyrosine residues, respectively). Dissociative electron transfer within the complexes led to observation of [Y(*)GG](+), [GY(*)G](+), and [GGY(*)](+); CID resulted in cleavage of the tyrosine side chain as p-quinomethide, yielding [G(*)GG](+), [GG(*)G](+), and [GGG(*)](+), respectively. Interconversions between these isomeric triglycine radical cations have relatively high barriers (> or = 44.7 kcal/mol), in support of the thesis that isomerically pure [G(*)GG](+), [GG(*)G](+), and [GGG(*)](+) can be experimentally produced. This is to be contrasted with barriers < 17 kcal/mol that were encountered in the tautomerism of protonated triglycine [Rodriquez C. F. et al. J. Am. Chem. Soc. 2001, 123, 3006-3012]. The CID spectra of [G(*)GG](+), [GG(*)G](+), and [GGG(*)](+) were substantially different, providing experimental proof that initially these ions have distinct structures. DFT calculations showed that direct dissociations are competitive with interconversions followed by dissociation.


Cell | 2010

The Tetrahymena argonaute-binding protein Giw1p directs a mature argonaute-siRNA complex to the nucleus.

Tomoko Noto; Henriette M. Kurth; Kensuke Kataoka; Lucia Aronica; Leroi V. DeSouza; K. W. Michael Siu; Ronald E. Pearlman; Martin A. Gorovsky; Kazufumi Mochizuki

Emerging evidence suggests that RNA interference (RNAi)-related processes act both in the cytoplasm and in the nucleus. However, the process by which the RNAi machinery is transported into the nucleus remains poorly understood. The Tetrahymena Argonaute protein Twi1p localizes to the nucleus and is crucial for small RNA-directed programmed DNA elimination. In this study, we identify Giw1p, which binds to Twi1p and is required for its nuclear localization. Furthermore, the endoribonuclease (Slicer) activity of Twi1p plays a vital role in the removal of one of the two strands of Twi1p-associated small interfering RNAs (siRNAs), leading to a functionally mature Twi1p-siRNA complex. Slicer activity is also shown to be required for nuclear localization of Twi1p and for its association with Giw1p. These results suggest that Giw1p senses the state of Twi1p-associated siRNAs and selectively transports the mature Twi1p-siRNA complex into the nucleus.


Journal of the American Society for Mass Spectrometry | 1997

Complexes of silver(I) with peptides and proteins as produced in electrospray mass spectrometry

Hongbo Li; K. W. Michael Siu; Roger Guevremont; J. C. Yves Le Blanc

Silver(I) forms aqueous phase complexes with both sulfur and nonsulfur containing peptides and proteins. These complexes were introduced into the gas phase via electrospray, and their structures probed by means of tandem mass spectrometry. Experiments with di-, tri-, and oligopeptides show that the abundance of silver(I)-containing ions increases relative to that of proton-containing ions as peptide length increases. This increase is much more dramatic for methionine-containing peptides. Collision-induced dissociation of silver-peptide complexes yields a multitude of product ions that are silver containing. However, even for methioninecontaining peptides, very few of these product ions contain the methionine residue. The solution-phase structure and the gas-phase structure of the silver/peptide complex are not identical. The methionine sulfur acts as the silver anchoring point in solution. Desolvation in the gas phase leads to a rearrangement of the silver/peptide complex such that the silver ion becomes chelated to the nitrogen and oxygen atom on the peptide backbone in addition to the methionine sulfur. This rearrangement decreases the importance of the silver/sulfur bond to the extent that it is frequently broken upon collision activation and leads to the formation of silver/peptide product ions that are nonsulfur bearing.


Journal of Proteome Research | 2009

iTRAQ-multidimensional liquid chromatography and tandem mass spectrometry-based identification of potential biomarkers of oral epithelial dysplasia and novel networks between inflammation and premalignancy.

Ranju Ralhan; Leroi V. DeSouza; Ajay Matta; Satyendra C. Tripathi; Shaun Ghanny; Siddhartha Dattagupta; Alok Thakar; Shyam S. Chauhan; K. W. Michael Siu

Chronic exposure of the oral mucosa to carcinogens in tobacco is linked to inflammation and development of oral premalignant lesions (OPLs) with high risk of progression to cancer; there is currently no clinical methodology to identify high-risk lesions. We hypothesized that identification of differentially expressed proteins in OPLs in relation to normal oral tissues using proteomic approach will reveal changes in multiple cellular pathways and aid in biomarker discovery. Isobaric mass tags (iTRAQ)-labeled oral dysplasias and normal tissues were compared against pooled normal control by online liquid chromatography and tandem mass spectrometry. Verification of biomarkers was carried out in an independent set of samples by immunohistochemistry, immunoblotting, and RT-PCR. We identified 459 nonredundant proteins in OPLs, including structural proteins, signaling components, enzymes, receptors, transcription factors, and chaperones. A panel of three best-performing biomarkers identified by iTRAQ analysis and verified by immunohistochemistrystratifin (SFN), YWHAZ, and hnRNPKachieved a sensitivity of 0.83, 0.91, specificity of 0.74, 0.95, and predictive value of 0.87 and 0.96, respectively, in discriminating dysplasias from normal tissues, thereby confirming their utility as potential OPL biomarkers. Pathway analysis revealed direct interactions between all the three biomarkers and their involvement in two major networks involved in inflammation, signaling, proliferation, regulation of gene expression, and cancer. In conclusion, our work on determining the OPL proteome unraveled novel networks linking inflammation and development of epithelial dysplasia and their key regulatory proteins may serve as novel chemopreventive/therapeutic targets for early intervention. Additionally, we identified and verified a panel of OPL biomarkers that hold promise for large-scale validation for ultimate clinical use.


Analytical Chemistry | 2009

Absolute Quantification of Potential Cancer Markers in Clinical Tissue Homogenates Using Multiple Reaction Monitoring on a Hybrid Triple Quadrupole/Linear Ion Trap Tandem Mass Spectrometer

Leroi V. DeSouza; Alexander D. Romaschin; Terence J. Colgan; K. W. Michael Siu

Multidimensional liquid chromatography with tandem mass spectrometry with iTRAQ-labeling typically used for differential expression analysis in biomarker discovery does not always detect peptides from these biomarkers in all samples analyzed. Herein we describe the results of targeted analyses using multiple reaction monitoring (MRM) on a hybrid triple quadrupole/linear ion-trap tandem mass spectrometer. The MRM approach when combined with the newly released mTRAQ reagent, a non-isobaric variant of the iTRAQ tag available in two versions, enables absolute quantification of peptides and proteins via isotope-dilution mass spectrometry. This approach was applied to clinical endometrial tissue homogenates in an effort to quantify two endometrial cancer biomarkers, pyruvate kinase (PK) and polymeric immunoglobulin receptor (PIGR). We successfully demonstrated the feasibility of this approach on 20 individual samples and further verified the differential expressions of these two biomarkers in endometrial carcinoma. PK was determined to be present at an average concentration of 58.33 pmol/mg of total proteins and in the range of 9.13-87.66 pmol/mg in the soluble fraction of the normal proliferative endometrium homogenates. By contrast, the average concentration of PK in the cancer sample homogenates was 237.2 pmol/mg of total proteins and in the range of 66.10-570.9 pmol/mg. PIGR was found to be expressed at an average concentration of 8.85 pmol/mg of total proteins with a range of 1.02-49.61 pmol/mg in the normal proliferative control samples, and an average concentration of 200.2 pmol/mg with a range of 7.63-810.4 pmol/mg in the cancer samples. This study confirmed qualitatively the differential expressions previously observed but also showed that the actual relative differential expressions in these samples were much higher than those reported in the discovery study. These results validated earlier observations of dynamic-range compression in iTRAQ-labeling with hybrid quadrupole/time-of-flight mass spectrometry (DeSouza, L.V. et al. J. Proteome Res. 2008, 7, 3525-3534).


Journal of the American Society for Mass Spectrometry | 1998

Relative silver(I) ion binding energies of α-amino acids : A determination by means of the kinetic method

Vicky Wing-Man Lee; Hongbo Li; Tai-Chu Lau; Roger Guevremont; K. W. Michael Siu

The relative silver(I) ion binding energies of 19 α-amino acids have been measured by means of the kinetic method. In general, they are similar to the relative copper(I) ion binding energies of corresponding amino acids although there are differences that can be accounted for by differences in silver(I) and copper(I) chemistry. The correlation with proton basicities is comparatively poorer. Again, the differences between silver(I) and proton binding can be attributed to differences in silver(I) and proton chemistry. The relative silver(I) binding energies measured are best described as relative basicities or ΔΔGAg°’s. The observed internal consistency during construction of a silver(I) ion basicity ladder implies that ΔΔSAg° is approximately zero except when histidine and lysine are involved. For 16 α-amino acids, their relative silver(I) ion basicities ≈ relative silver(I) ion affinities or ΔΔG° Ag ≈ ΔΔHAg°.

Collaboration


Dive into the K. W. Michael Siu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivan K. Chu

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chi-Kit Siu

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge