Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where K. Woźniak is active.

Publication


Featured researches published by K. Woźniak.


Physical Review C | 2002

Centrality dependence of the charged particle multiplicity near mid-rapidity in Au + Au collisions at

B. B. Back; M. Ballintijn; M. D. Baker; D. S. Barton; R.R. Betts; A. Bickley; R. Bindel; A. Budzanowski; W. Busza; Alan S. Carroll; J. Corbo; M.P. Decowski; E. Garcia; N. George; K. Gulbrandsen; S. Gushue; C. Halliwell; J. Hamblen; G. A. Heintzelman; C. Henderson; D. Hicks; D. J. Hofman; R. S. Hollis; R. Hołyński; B. Holzman; A. Iordanova; E. Johnson; J. L. Kane; J. Katzy; N. Khan

The PHOBOS experiment has measured the charged particle multiplicity at mid-rapidity in Au+Au collisions at sqrt(s_NN) = 200 GeV as a function of the collision centrality. Results on dN/deta(eta , are presented as a function of . As was found from similar data at sqrt(s_NN) = 130 GeV, the data can be equally well described by parton saturation models and two-component fits which include contributions that scale as Npart and the number of binary collisions, Ncoll. We compare the data at the two energies by means of the ratio R(200/130) of the charged particle multiplicity for the two different energies as a function of . For events with >100


Physical Review Letters | 2001

\sqrt{s}

B. B. Back; M. D. Baker; D. S. Barton; R.R. Betts; R. Bindel; A. Budzanowski; W. Busza; Alan S. Carroll; J. Corbo; M.P. Decowski; E. Garcia; N. George; K. Gulbrandsen; S. Gushue; C. Halliwell; J. Hamblen; C. Henderson; D. Hicks; D. J. Hofman; R. S. Hollis; R. Hołyński; B. Holzman; A. Iordanova; E. Johnson; J. L. Kane; J. Katzy; N. Khan; W. Kucewicz; P. Kulinich; Chih-Yu Kuo

, we find that this ratio is consistent with a constant value of 1.14+-0.01(stat.)+-0.05(syst.).


Physics Letters B | 2004

(NN) = 130-GeV and 200-GeV

B. B. Back; M. D. Baker; D.S. Barton; R. R. Betts; M. Ballintijn; A. A. Bickley; R. Bindel; A. Budzanowski; W. Busza; A. Carroll; M.P. Decowski; E. García; N. George; K. Gulbrandsen; S. Gushue; C. Halliwell; J. Hamblen; G.A. Heintzelman; C. Henderson; D. J. Hofman; R. S. Hollis; R. Holynski; B. Holzman; A. Iordanova; E. Johnson; J.L. Kane; J. Katzy; N. Khan; W. Kucewicz; P. Kulinich

We present the first measurement of the pseudorapidity density of primary charged particles in Au+Au collisions at root square[s(NN)] = 200 GeV. For the 6% most central collisions, we obtain dN(ch)/d(eta)/(/eta/<1) = 650+/-35(syst). Compared to collisions at root square[s(NN)] = 130 GeV, the highest energy studied previously, an increase by a factor of 1.14+/-0.05 at 90% confidence level, is found. The energy dependence of the pseudorapidity density is discussed in comparison with data from proton-induced collisions and theoretical predictions.


Physical Review C | 2002

Energy dependence of particle multiplicities in central Au + Au collisions

B. B. Back; M. D. Baker; D. S. Barton; R.R. Betts; R. Bindel; A. Budzanowski; W. Busza; Alan S. Carroll; M.P. Decowski; E. Garcia; N. George; K. Gulbrandsen; S. Gushue; C. Halliwell; G. A. Heintzelman; C. Henderson; R. Hołyński; D. J. Hofman; B. Holzman; E. Johnson; J. L. Kane; J. Katzy; N. Khan; W. Kucewicz; P. Kulinich; W. T. Lin; S. Manly; D. McLeod; J. Michalowski; A. C. Mignerey

We present transverse momentum distributions of charged hadrons produced in Au+Au collisions at sqrt(s_NN) = 200 GeV. The spectra were measured for transverse momenta p_T from 0.25 to 4.5 GeV/c in a rapidity range of 0.2 < y_pi < 1.4. The evolution of the spectra is studied as a function of collision centrality, from 65 to 344 participating nucleons. The results are compared to data from proton-antiproton collisions and Au+Au collisions at lower RHIC energies. We find a significant change of the spectral shape between proton-antiproton and peripheral Au+Au collisions. Comparing peripheral to central Au+Au collisions, we find that the yields at high p_T exhibit approximate scaling with the number of participating nucleons, rather than scaling with the number of binary collisions.


Nuclear Physics | 2003

Charged hadron transverse momentum distributions in Au+Au collisions at sNN=200 GeV

Steven L. Manly; B. B. Back; M. D. Baker; D.S. Barton; R.R. Betts; R. Bindel; A. Budzanowski; W. Busza; A. Carroll; M.P. Decowski; E. García; N. George; K. Gulbrandsen; S. Gushue; C. Halliwell; J. Hamblen; C. Henderson; David Jonathan Hofman; R. S. Hollis; R. Hołyinski; B. Holzman; A. Iordanova; E. Johnson; J.L. Kane; J. Katzy; N. Khan; W. Kucewicz; P. Kulinich; Chia-Ming Kuo; Willis Lin

We present a measurement of the pseudorapidity density of primary charged particles near mid-rapidity in Au+Au collisions at sqrt(s_NN) = 130 GeV as a function of the number of participating nucleons. These results are compared to models in an attempt to discriminate between competing scenarios of particle production in heavy ion collisions.


Physical Review Letters | 2005

Centrality dependence of charged particle multiplicity at mid-rapidity in Au + Au collisions at

B. B. Back; M. D. Baker; M. Ballintijn; D.S. Barton; R. R. Betts; A. A. Bickley; R. Bindel; W. Busza; A. Carroll; Z. Chai; M.P. Decowski; E. Garcia; T. Gburek; N. George; K. Gulbrandsen; C. Halliwell; J. Hamblen; M. Hauer; C. Henderson; D. J. Hofman; R. S. Hollis; R. Holynski; B. Holzman; A. Iordanova; E. Johnson; J.L. Kane; N. Khan; P. Kulinich; C. M. Kuo; Willis Lin

Abstract Argonne flow and Bose-Einstein correlations have been measured in Au-Au collisions at S N N = 130 and 200 GeV using the PHOBOS detector at RHIC. The systematic dependencies of the flow signal on the transverse momentum, pseudorapidity, and centrality of the collision, as well as the beam energy are shown. In addition, results of a 3-dimensional analysis of two-pion correlations in the 200 GeV data are presented.


Physical Review Letters | 2006

\sqrt{s_{NN}}

B. Alver; B. B. Back; M. D. Baker; M. Ballintijn; D.S. Barton; R. R. Betts; R. Bindel; W. Busza; Z. Chai; V. Chetluru; E. Garcia; T. Gburek; K. Gulbrandsen; J. Hamblen; I. Harnarine; C. Henderson; D. J. Hofman; R. S. Hollis; R. Holynski; B. Holzman; A. Iordanova; J.L. Kane; P. Kulinich; C. M. Kuo; W. Li; Willis Lin; C. Loizides; S. Manly; A. C. Mignerey; R. Nouicer

We have measured transverse momentum distributions of charged hadrons produced in Au+Au collisions at sqrt(s_NN) = 62.4 GeV. The spectra are presented for transverse momenta 0.25<p_T<4.5 GeV/c, in a pseudo-rapidity range of 0.2<eta<1.4. The nuclear modification factor R_AA is calculated relative to p+p data at the same collision energy as a function of collision centrality. For p_T>2 GeV/c, R_AA is found to be significantly larger than in Au+Au collisions at sqrt(s_NN) =130 and 200 GeV. In contrast, we find that the evolution of the invariant yields per participant pair from peripheral to central collisions is approximately energy independent over this range of collision energies. This observation challenges models of high p_T hadron suppression in terms of parton energy loss.


Physics Letters B | 2004

= 130-GeV

B. B. Back; M. D. Baker; D.S. Barton; R. R. Betts; M. Ballintijn; A. A. Bickley; R. Bindel; A. Budzanowski; W. Busza; A. Carroll; M.P. Decowski; E. García; N. George; K. Gulbrandsen; S. Gushue; C. Halliwell; J. Hamblen; G.A. Heintzelman; C. Henderson; D. J. Hofman; R. S. Hollis; R. Holynski; B. Holzman; A. Iordanova; E. Johnson; J.L. Kane; J. Katzy; N. Khan; W. Kucewicz; P. Kulinich

We present transverse momentum distributions of charged hadrons produced in Cu+Cu collisions at sqrt(s) = 62.4 and 200 GeV. The spectra are measured for transverse momenta of 0.25<p_T<5.0 GeV/c at sqrt(s) = 62.4 GeV and 0.25<p_T<7.0 GeV/c at sqrt(s) = 200 GeV, in a pseudo-rapidity range of 0.2<eta<1.4. The nuclear modification factor R_AA is calculated relative to p+p data at both collision energies as a function of collision centrality. At a given collision energy and fractional cross-section, R_AA is observed to be systematically larger in Cu+Cu collisions compared to Au+Au. However, for the same number of participating nucleons, R_AA is essentially the same in both systems over the measured range of p_T, in spite of the significantly different geometries of the Cu+Cu and Au+Au systems.


arXiv: Nuclear Experiment | 2005

Flow and bose-einstein correlations in Au-Au collisions at RHIC

Z. Chai; B. B. Back; M. D. Baker; M. Ballintijn; D.S. Barton; R.R. Betts; A. A. Bickley; R. Bindel; A. Budzanowski; W. Busza; A. Carroll; Z Chai; M.P. Decowski; E. García; N. George; K. Gulbrandsen; S. Gushue; C. Halliwell; J. Hamblen; G.A. Heintzelman; C. Henderson; David Jonathan Hofman; R. S. Hollis; R. Holynski; Burt Holzman; A. Iordanova; E. Johnson; J.L. Kane; J. Katzy; N. Khan

We present transverse momentum distributions of charged hadrons produced in Au+Au collisions at sqrt(s_NN) = 200 GeV. The spectra were measured for transverse momenta p_T from 0.25 to 4.5 GeV/c in a rapidity range of 0.2 < y_pi < 1.4. The evolution of the spectra is studied as a function of collision centrality, from 65 to 344 participating nucleons. The results are compared to data from proton-antiproton collisions and Au+Au collisions at lower RHIC energies. We find a significant change of the spectral shape between proton-antiproton and peripheral Au+Au collisions. Comparing peripheral to central Au+Au collisions, we find that the yields at high p_T exhibit approximate scaling with the number of participating nucleons, rather than scaling with the number of binary collisions.


Nuclear Physics | 2001

Centrality Dependence of Charged Hadron Transverse Momentum Spectra inAu+AuCollisions fromsNN=62.4to 200 GeV

A. Dąbrowska; R. Holynski; Andrzej Olszewski; M. Szarska; A. Trzupek; B. Wilczynska; H. Wilczynski; W. Wolter; B. K. Wosiek; K. Woźniak

This paper presents the analysis of the dynamic fluctuations in the inclusive charged particle multiplicity measured by PHOBOS for Au+Au collisions at ?sNN = 200GeV within the pseudo-rapidity range of ?3 < ? < 3. First the definition of the fluctuations observables used in this analysis is presented, together with the discussion of their physics meaning. Then the procedure for the extraction of dynamic fluctuations is described. Some preliminary results are included to illustrate the correlation features of the fluctuation observable. New dynamic fluctuations results will be available in a later publication.

Collaboration


Dive into the K. Woźniak's collaboration.

Top Co-Authors

Avatar

B. B. Back

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

M. D. Baker

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

W. Busza

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

C. Halliwell

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

C. Henderson

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

E. Johnson

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

N. George

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Holynski

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

D.S. Barton

Brookhaven National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge