Ka Ian Tam
Centers for Disease Control and Prevention
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ka Ian Tam.
BMJ | 2013
Manish M. Patel; Maritza Patzi; Desiree Pastor; Aleida Nina; Yelin Roca; Leovigildo Alvarez; Volga Iñiguez; Rosario Rivera; Ka Ian Tam; Osbourne Quaye; Michael D. Bowen; Umesh D. Parashar; Lucia Helena de Oliveira
Objective To evaluate the effectiveness of two doses of a monovalent rotavirus vaccine (RV1) against hospital admission for rotavirus in Bolivia. Design Case-control study. Setting Six hospitals in Bolivia, between March 2010 and June 2011. Participants 400 hospital admissions for rotavirus, 1200 non-diarrhea hospital controls, and 718 rotavirus negative hospital controls. Main outcome measures Odds of antecedent vaccination between case patients and controls; effectiveness of vaccination ((1–adjusted odds ratio)×100), adjusted for age and other confounders; and stratified effectiveness by dose, disease severity, age group, and serotype. Results In comparison with non-diarrhea controls, case patients were more likely to be male and attend day care but less likely to have chronic underlying illness, higher level maternal education, and telephones and computers in their home. Rotavirus negative controls were somewhat more similar to case patients but also were more likely to be male and attend day care and less likely to have higher level maternal education and computers in their homes. The adjusted effectiveness of RV1 against hospital admission for rotavirus was 69% (95% confidence interval 54% to 79%) with rotavirus negative controls and 77% (65% to 84%) with non-diarrhea controls. The effectiveness of one dose of RV1 was 36% and 56%, respectively. With both control groups, protection was sustained through two years of life, with similar efficacy against hospital admission among children under 1 year (64% and 77%) and over 1 year of age (72% and 76%). RV1 provided significant protection against diverse serotypes, partially and fully heterotypic to the G1P[8] vaccine. Effectiveness using the two control groups was 80% and 85% against G9P[8], 74% and 93%% against G3P[8], 59% and 69% against G2P[4], and 80% and 87% against G9P[6] strains. Conclusion The monovalent rotavirus vaccine conferred high protection against hospital admission for diarrhea due to rotavirus in Bolivian children. Protection was sustained through two years of life against diverse serotypes different from the vaccine strain.
Emerging Infectious Diseases | 2013
Jacqueline E. Tate; Slavica Mijatovic-Rustempasic; Ka Ian Tam; Freda C. Lyde; Daniel C. Payne; Peter G. Szilagyi; Kathryn M. Edwards; Mary Allen Staat; Geoffrey A. Weinberg; Caroline B. Hall; James D. Chappell; Monica M. McNeal; Jon R. Gentsch; Michael D. Bowen; Umesh D. Parashar
We compared rotavirus detection rates in children with acute gastroenteritis (AGE) and in healthy controls using enzyme immunoassays (EIAs) and semiquantitative real-time reverse transcription PCR (qRT-PCR). We calculated rotavirus vaccine effectiveness using different laboratory-based case definitions to determine which best identified the proportion of disease that was vaccine preventable. Of 648 AGE patients, 158 (24%) were EIA positive, and 157 were also qRT-PCR positive. An additional 65 (10%) were qRT-PCR positive but EIA negative. Of 500 healthy controls, 1 was EIA positive and 24 (5%) were qRT-PCR positive. Rotavirus vaccine was highly effective (84% [95% CI 71%–91%]) in EIA-positive children but offered no significant protection (14% [95% CI −105% to 64%]) in EIA-negative children for whom virus was detected by qRT-PCR alone. Children with rotavirus detected by qRT-PCR but not by EIA were not protected by vaccination, suggesting that rotavirus detected by qRT-PCR alone might not be causally associated with AGE in all patients.
Annals of Internal Medicine | 2012
Cristina V. Cardemil; Margaret M. Cortese; Andrew Medina-Marino; Supriya Jasuja; Rishi Desai; Jessica Leung; Cristina Rodriguez-Hart; Gissela Villarruel; Julia Howland; Osbourne Quaye; Ka Ian Tam; Michael D. Bowen; Umesh D. Parashar; Susan I. Gerber
BACKGROUND Outbreaks of rotavirus gastroenteritis in elderly adults are reported infrequently but are often caused by G2P[4] strains. In 2011, outbreaks were reported in 2 Illinois retirement facilities. OBJECTIVE To implement control measures, determine the extent and severity of illness, and assess risk factors for disease among residents and employees. DESIGN Cohort studies using surveys and medical chart abstraction. SETTING Two large retirement facilities in Cook County, Illinois. PATIENTS Residents and employees at both facilities and community residents with rotavirus disease. MEASUREMENTS Attack rates, hospitalization rates, and rotavirus genotype. RESULTS At facility A, 84 of 324 residents (26%) were identified with clinical or laboratory-confirmed rotavirus gastroenteritis (median age, 84 years) and 11 (13%) were hospitalized. The outbreak lasted 7 weeks. At facility B, 90 case patients among 855 residents (11%) were identified (median age, 88 years) and 19 (21%) were hospitalized. The facility B outbreak lasted 9.3 weeks. Ill employees were identified at both locations. In each facility, attack rates seemed to differ by residential setting, with the lowest rates among those in more separated settings or with high baseline level of infection control measures. The causative genotype for both outbreaks was G2P[4]. Some individuals shed virus detected by enzyme immunoassay or genotyping reverse transcription polymerase chain reaction for at least 35 days. G2P[4] was also identified in 17 of 19 (89%) samples from the older adult community but only 15 of 40 (38%) pediatric samples. LIMITATION Medical or cognitive impairment among residents limited the success of some interviews. CONCLUSION Rotavirus outbreaks can occur among elderly adults in residential facilities and can result in considerable morbidity. Among older adults, G2P[4] may be of unique importance. Health professionals should consider rotavirus as a cause of acute gastroenteritis in adults. PRIMARY FUNDING SOURCE None.
Human Vaccines & Immunotherapeutics | 2014
Rashi Gautam; Mathew D. Esona; Slavica Mijatovic-Rustempasic; Ka Ian Tam; Jon R. Gentsch; Michael D. Bowen
Group A rotaviruses (RVA) are the leading cause of severe diarrhea in young children worldwide. Two live-attenuated RVA vaccines, Rotarix® and RotaTeq® are recommended by World Health Organization (WHO) for routine immunization of all infants. Rotarix® and RotaTeq® vaccines have substantially reduced RVA associated mortality but occasionally have been associated with acute gastroenteritis (AGE) cases identified in vaccinees and their contacts. High-throughput assays are needed to monitor the prevalence of vaccine strains in AGE cases and emergence of new vaccine-derived strains following RVA vaccine introduction. In this study, we have developed quantitative real-time RT-PCR (qRT-PCR) assays for detection of Rotarix® and RotaTeq® vaccine components in stool samples. Real-time RT-PCR assays were designed for vaccine specific targets in the genomes of Rotarix® (NSP2, VP4) and RotaTeq® (VP6, VP3-WC3, VP3-human) and validated on sequence confirmed stool samples containing vaccine strains, wild-type RVA strains, and RVA-negative stools. For quantification, standard curves were generated using dsRNA transcripts derived from RVA gene segments. Rotarix® NSP2 and VP4 qRT-PCR assays exhibited 92–100% sensitivity, 99–100% specificity, 94–105% efficiency, and a limit of detection of 2–3 copies per reaction. RotaTeq® VP6, VP3-WC3, and VP3-human qRT-PCR assays displayed 100% sensitivity, 94–100% specificity, 91–102% efficiency and limits of detection of 1 copy, 2 copies, and 140 copies, respectively. These assays permit rapid identification of Rotarix® and RotaTeq® vaccine components in stool samples from clinical and surveillance studies and will be helpful in determining the frequency of vaccine strain-associated AGE.
Infection, Genetics and Evolution | 2014
Ka Ian Tam; Sunando Roy; Mathew D. Esona; Starlene Jones; Stephanie Sobers; Victoria Morris-Glasgow; Gloria Rey-Benito; Jon R. Gentsch; Michael D. Bowen
Since 2004, the Pan American Health Organization (PAHO) has carried out rotavirus surveillance in Latin America and the Caribbean. Here we report the characterization of human rotavirus with the novel G-P combination of G4P[14], detected through PAHO surveillance in Barbados. Full genome sequencing of strain RVA/Human-wt/BRB/CDC1133/2012/G4P[14] revealed that its genotype is G4-P[14]-I1-R1-C1-M1-A8-N1-T1-E1-H1. The possession of a Genogroup 1 (Wa-like) backbone distinguishes this strain from other P[14] rotavirus strains. Phylogenetic analyses suggested that this strain was likely generated by genetic reassortment between human, porcine and possibly other animal rotavirus strains and identified 7 lineages within the P[14] genotype. The results of this study reinforce the potential role of interspecies transmission in generating human rotavirus diversity through reassortment. Continued surveillance is important to determine if rotavirus vaccines will protect against strains that express the P[14] rotavirus genotype.
PeerJ | 2016
Rashi Gautam; Slavica Mijatovic-Rustempasic; Mathew D. Esona; Ka Ian Tam; Osbourne Quaye; Michael D. Bowen
Background. Group A rotavirus (RVA) infection is the major cause of acute gastroenteritis (AGE) in young children worldwide. Introduction of two live-attenuated rotavirus vaccines, RotaTeq® and Rotarix®, has dramatically reduced RVA associated AGE and mortality in developed as well as in many developing countries. High-throughput methods are needed to genotype rotavirus wild-type strains and to identify vaccine strains in stool samples. Quantitative RT-PCR assays (qRT-PCR) offer several advantages including increased sensitivity, higher throughput, and faster turnaround time. Methods. In this study, a one-step multiplex qRT-PCR assay was developed to detect and genotype wild-type strains and vaccine (Rotarix® and RotaTeq®) rotavirus strains along with an internal processing control (Xeno or MS2 RNA). Real-time RT-PCR assays were designed for VP7 (G1, G2, G3, G4, G9, G12) and VP4 (P[4], P[6] and P[8]) genotypes. The multiplex qRT-PCR assay also included previously published NSP3 qRT-PCR for rotavirus detection and Rotarix® NSP2 and RotaTeq® VP6 qRT-PCRs for detection of Rotarix® and RotaTeq® vaccine strains respectively. The multiplex qRT-PCR assay was validated using 853 sequence confirmed stool samples and 24 lab cultured strains of different rotavirus genotypes. By using thermostable rTth polymerase enzyme, dsRNA denaturation, reverse transcription (RT) and amplification (PCR) steps were performed in single tube by uninterrupted thermocycling profile to reduce chances of sample cross contamination and for rapid generation of results. For quantification, standard curves were generated using dsRNA transcripts derived from RVA gene segments. Results. The VP7 qRT-PCRs exhibited 98.8–100% sensitivity, 99.7–100% specificity, 85–95% efficiency and a limit of detection of 4–60 copies per singleplex reaction. The VP7 qRT-PCRs exhibited 81–92% efficiency and limit of detection of 150–600 copies in multiplex reactions. The VP4 qRT-PCRs exhibited 98.8–100% sensitivity, 100% specificity, 86–89% efficiency and a limit of detection of 12–400 copies per singleplex reactions. The VP4 qRT-PCRs exhibited 82–90% efficiency and limit of detection of 120–4000 copies in multiplex reaction. Discussion. The one-step multiplex qRT-PCR assay will facilitate high-throughput rotavirus genotype characterization for monitoring circulating rotavirus wild-type strains causing rotavirus infections, determining the frequency of Rotarix® and RotaTeq® vaccine strains and vaccine-derived reassortants associated with AGE, and help to identify novel rotavirus strains derived by reassortment between vaccine and wild-type strains.
Clinical Infectious Diseases | 2015
Massimo Pacilli; Margaret M. Cortese; Shamika Smith; Alicia Siston; Usha Samala; Michael D. Bowen; Jorge P. Parada; Ka Ian Tam; Kunchala Rungsrisuriyachai; Sunando Roy; Mathew D. Esona; Stephanie Black
BACKGROUND Rotavirus infection in adults is poorly understood and few rotavirus outbreaks among US adults have been reported in the literature. We describe an outbreak due to genotype G12P[8] rotavirus among medical students, faculty, and guests who attended a formal dinner event in April 2013. METHODS A web-based questionnaire was distributed to event attendees to collect symptom and exposure data. A clinical case was defined as a person who developed diarrhea after attending the formal event. A laboratory-confirmed case was defined as a clinical case who attended the formal event, with rotavirus detected in stool by enzyme immunoassay or reverse transcription-polymerase chain reaction (RT-PCR) assay. RESULTS Among 334 dinner attendees, 136 (41%) completed the web-based questionnaire; 58 (43%) respondents reported illness. Symptom onset ranged from 1 to 8 days, with peak onset 3 days after the event. In addition to diarrhea, predominant symptoms included fever (91%), abdominal pain (84%), and vomiting (49%). The median duration of illness was 2.5 days. Thirteen (22%) of 58 cases sought medical attention; none were hospitalized. Analysis of food exposures among questionnaire respondents did not identify significant associations between any specific food or drink item and illness. Stool specimens were negative for bacterial pathogens by culture and negative for norovirus by RT-PCR assay; 4 specimens were positive for rotavirus by enzyme immunoassay or PCR. G12P[8]-R1-C1-M1-A1-N1-T1-E1-H1 was identified as the causative full-genome genotype. CONCLUSIONS Rotavirus outbreaks can occur among adults, including young adults. Health professionals should consider rotavirus as a cause of acute gastroenteritis in adults.
Journal of Virological Methods | 2015
Mathew D. Esona; Rashi Gautam; Ka Ian Tam; Alice Williams; Slavica Mijatovic-Rustempasic; Michael D. Bowen
The current two-step VP7 and VP4 genotyping RT-PCR assays for rotaviruses have been linked consistently to genotyping failure in an estimated 30% of RVA positive samples worldwide. We have developed a VP7 and VP4 multiplexed one-step genotyping assays using updated primers generated from contemporary VP7 and VP4 sequences. To determine assay specificity and sensitivity, 17 reference virus strains, 6 non-target gastroenteritis viruses and 725 clinical samples carrying the most common VP7 (G1, G2, G3, G4, G9, and G12) and VP4 (P[4], P[6], P[8], P[9] and P[10]) genotypes were tested in this study. All reference RVA strain targets yielded amplicons of the expected sizes and non-target genotypes and gastroenteritis viruses were not detected by either assay. Out of the 725 clinical samples tested, the VP7 and VP4 assays were able to assigned specific genotypes to 711 (98.1%) and 714 (98.5%), respectively. The remaining unassigned samples were re-tested for RVA antigen using EIA and qRT-PCR assays and all were found to be negative. The overall specificity, sensitivity and limit of detection of the VP7 assay were in the ranges of 99.0-100%, 94.0-100% and 8.6×10(1) to 8.6×10(2) copies of RNA/reaction, respectively. For the VP4 assay, the overall specificity, sensitivity and limit of detection assay were in the ranges of 100%, 94.0-100% and ≤1 to 8.6×10(2) copies of RNA/reaction, respectively. Here we report two highly robust, accurate, efficient, affordable and documentable gel-based genotyping systems which are capable of genotyping 97.8% of the six common VP7 and 98.3% of the five common VP4 genotypes of RVA strains which are responsible for approximately 88.2% of all RVA infections worldwide.
Memorias Do Instituto Oswaldo Cruz | 2018
Osbourne Quaye; Sunando Roy; Kunchala Rungsrisuriyachai; Mathew D. Esona; Ziqian Xu; Ka Ian Tam; Dina J. Castro Banegas; Gloria Rey-Benito; Michael D. Bowen
BACKGROUND Although first detected in animals, the rare rotavirus strain G10P[14] has been sporadically detected in humans in Slovenia, Thailand, United Kingdom and Australia among other countries. Earlier studies suggest that the strains found in humans resulted from interspecies transmission and reassortment between human and bovine rotavirus strains. OBJECTIVES In this study, a G10P[14] rotavirus genotype detected in a human stool sample in Honduras during the 2010-2011 rotavirus season, from an unvaccinated 30-month old boy who reported at the hospital with severe diarrhea and vomiting, was characterised to determine the possible evolutionary origin of the rare strain. METHODS For the sample detected as G10P[14], 10% suspension was prepared and used for RNA extraction and sequence independent amplification. The amplicons were sequenced by next-generation sequencing using the Illumina MiSeq 150 paired end method. The sequence reads were analysed using CLC Genomics Workbench 6.0 and phylogenetic trees were constructed using PhyML version 3.0. FINDINGS The next generation sequencing and phylogenetic analyses of the 11-segmented genome of the G10P[14] strain allowed classification as G10-P[14]-I2-R2-C2-M2-A3-N2-T6-E2-H3. Six of the genes (VP1, VP2, VP3, VP6, NSP2 and NSP4) were DS-1-like. NSP1 and NSP5 were AU-1-like and NSP3 was T6, which suggests that multiple reassortment events occurred in the evolution of the strain. The phylogenetic analyses and genetic distance calculations showed that the VP7, VP4, VP6, VP1, VP3, NSP1, NSP3 and NSP4 genes clustered predominantly with bovine strains. NSP2 and VP2 genes were most closely related to simian and human strains, respectively, and NSP5 was most closely related to a rhesus strain. MAIN CONCLUSIONS The genetic characterisation of the G10P[14] strain from Honduras suggests that its genome resulted from multiple reassortment events which were possibly mediated through interspecies transmissions.
Journal of Virological Methods | 2015
Ka Ian Tam; Mathew D. Esona; Alice Williams; Valantine N. Ndze; Angeline Boula; Michael D. Bowen
Rotavirus is the most important cause of severe childhood gastroenteritis worldwide. Rotavirus vaccines are available and rotavirus surveillance is carried out to assess vaccination impact. In surveillance studies, stool samples are stored typically at 4°C or frozen to maintain sample quality. Uninterrupted cold storage is a problem in developing countries because of power interruptions. Cold-chain transportation of samples from collection sites to testing laboratories is costly. In this study, we evaluated the use of BBL™ Sensi-Discs™ and FTA(®) cards for storage and transportation of samples for virus isolation, EIA, and RT-PCR testing. Infectious rotavirus was recovered after 30 days of storage on Sensi-Discs™ at room temperature. We were able to genotype 98-99% of samples stored on Sensi-Discs™ and FTA(®) cards at temperatures ranging from -80°C to 37°C up to 180 days. A field sampling test using samples prepared and shipped from Cameroon, showed that both matrices yielded 100% genotyping success compared with whole stool and Sensi-Discs™ demonstrated 95% concordance with whole stool in EIA testing. The utilization of BBL™ Sensi-Discs™ and FTA(®) cards for stool sample storage and shipment has the potential to have great impact on global public health by facilitating surveillance and epidemiological investigations of rotavirus strains worldwide at a reduced cost.
Collaboration
Dive into the Ka Ian Tam's collaboration.
National Center for Immunization and Respiratory Diseases
View shared research outputsNational Center for Immunization and Respiratory Diseases
View shared research outputs