Kabir Lamsal
Kangwon National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kabir Lamsal.
Mycobiology | 2012
Sang Woo Kim; Jin Hee Jung; Kabir Lamsal; Yun Seok Kim; Ji Seon Min; Youn Su Lee
This research is concerned with the fungicidal properties of nano-size silver colloidal solution used as an agent for antifungal treatment ofvarious plant pathogens. We used WA-CV-WA13B, WA-AT-WB13R, and WA-PR-WB13R silver nanoparticles (AgNPs) at concentrations of 10, 25, 50, and 100 ppm. Eighteen different plant pathogenic fungi were treated with these AgNPs on potato dextrose agar (PDA), malt extract agar, and corn meal agar plates. We calculated fungal inhibition in order to evaluate the antifungal efficacy of silver nanoparticles against pathogens. The results indicated that AgNPs possess antifungal properties against these plant pathogens at various levels. Treatment with WA-CV-WB13R AgNPs resulted in maximum inhibition of most fungi. Results also showed that the most significant inhibition of plant pathogenic fungi was observed on PDA and 100 ppm of AgNPs.
Mycobiology | 2011
Kabir Lamsal; Sang Woo Kim; Jin Hee Jung; Yun Seok Kim; Kyong Su Kim; Youn Su Lee
Abstract Pepper anthracnose caused by Colletotrichum species is one of the most important limiting factors for pepper production in Korea, its management being strongly dependent on chemicals. The aim of this work was to evaluate the possibilities of using silver nanoparticles instead of commercial fungicides. In this study, we evaluated the effect of silver nanoparticles against pepper anthracnose under different culture conditions. Silver nanoparticles (WA-PR-WB13R) were applied at various concentrations to determine antifungal activities in vitro and in the field. The application of 100 ppm concentration of silver nanoparticles produced maximum inhibition of the growth of fungal hyphae as well as conidial germination in comparison to the control in vitro. In field trials, the inhibition of fungi was significantly high when silver nanoparticles were applied before disease outbreak on the plants. Scanning electron microscopy results indicated that the silver nanoparticles caused a detrimental effect on mycelial growth of Colletotrichum species.
Mycobiology | 2011
Kabir Lamsal; Sang Woo Kim; Jin Hee Jung; Yun Seok Kim; Kyoung Su Kim; Youn Su Lee
Abstract Powdery mildew is one of the most devastating diseases in cucurbits. Crop yield can decline as the disease severity increases. In this study, we evaluated the effect of silver nanoparticles against powdery mildew under different cultivation conditions in vitro and in vivo. Silver nanoparticles (WA-CV-WA13B) at various concentrations were applied before and after disease outbreak in plants to determine antifungal activities. In the field tests, the application of 100 ppm silver nanoparticles showed the highest inhibition rate for both before and after the outbreak of disease on cucumbers and pumpkins. Also, the application of 100 ppm silver nanoparticles showed maximum inhibition for the growth of fungal hyphae and conidial germination in in vivo tests. Scanning electron microscope results indicated that the silver nanoparticles caused detrimental effects on both mycelial growth and conidial germination.
Mycobiology | 2010
Jin-Hee Jung; Sang Woo Kim; Ji-Seon Min; Young-Jae Kim; Kabir Lamsal; Kyoung Su Kim; Youn Su Lee
Abstract White rot, which is caused by Sclerotium cepivorum, is a lethal disease affecting green onions. Three different types of nanosilver liquid (WA-CV-WA13B, WA-AT-WB13 R, and WA-PR-WB13 R) were tested in several different concentrations on three types of media to assess their antifungal activities. Results from in vitro experiments showed that all three of the nano-silver liquids had more than 90% inhibition rates at a concentration of 7 ppm. Greenhouse experiments revealed that all of the nano-silver liquids increased biomass and dry weights, and there were minimal changes in the population of various bacteria and fungi from the soil of greenhouse-cultivated green onions. In addition, a soil chemical analysis showed that there were minimal changes in soil composition.
Mycobiology | 2012
Kabir Lamsal; Sang Woo Kim; Yun Seok Kim; Youn Su Lee
In vitro and greenhouse screening of seven rhizobacterial isolates, AB05, AB10, AB11, AB12, AB14, AB15 and AB17, was conducted to investigate the plant growth promoting activities and inhibition against anthracnose caused by Colletotrichum acutatum in pepper. According to identification based on 16S rDNA sequencing, the majority of the isolates are members of Bacillus and a single isolate belongs to the genus Paenibacillus. All seven bacterial isolates were capable of inhibiting C. acutatum to various degrees. The results primarily showed that antibiotic substances produced by the selected bacteria were effective and resulted in strong antifungal activity against the fungi. However, isolate AB15 was the most effective bacterial strain, with the potential to suppress more than 50% mycelial growth of C. acutatum in vitro. Moreover, antibiotics from Paenibacillus polymyxa (AB15) and volatile compounds from Bacillus subtilis (AB14) exerted efficient antagonistic activity against the pathogens in a dual culture assay. In vivo suppression activity of selected bacteria was also analyzed in a greenhouse with the reference to their prominent in vitro antagonism efficacy. Induced systemic resistance in pepper against C. acutatum was also observed under greenhouse conditions. Where, isolate AB15 was found to be the most effective bacterial strain at suppressing pepper anthracnose under greenhouse conditions. Moreover, four isolates, AB10, AB12, AB15, and AB17, were identified as the most effective growth promoting bacteria under greenhouse conditions, with AB17 inducing the greatest enhancement of pepper growth.
Research in Plant Disease | 2011
Sang Woo Kim; Jin Hee Jung; Kabir Lamsal; Yun Seok Kim; Sang-Jun Sim; Ha-Sun Kim; Seok-Joon Chang; Jong Kuk Kim; Kyoung Su Kim; Youn Su Lee
In other previous in vitro tests, the hyphal growth of Raffaelea quercivorus was inhibited by the treatments of various concentration of nano-silver. In this field tests, treatment of different concentrations of nano-silver to oak trees in Cheolwon and Hongcheon sites showed the inhibition effects against wilt disease caused by Raffaelea quercivorus. However, nano-silver-treated oak tree in Chuncheon site showed mild wilt symptoms with no phytotoxicity. Scanning electron microscope (SEM) observation confirmed that the spore and hypha of Raffaelea sp. inside the vessels were damaged by nano-silver. This result indicates the application of nanosilver is effective for control of Raffaelea quercivorus in the field.
The Korean Journal of Mycology | 2016
Yun Seok Kim; Sang Woo Kim; Kabir Lamsal; Youn Su Lee
This study was conducted to evaluate five different strains of rhizobacterial isolates viz. PA1, PA2, PA4, PA5 and PA12 for biological control against Colletotrichum acutatum, C. coccodes, C. gloeosporioides, C. dematium, Botrytis cinerea, Rhizoctonia solani, Sclerotinia minor and Fusarium sp. In vitro inhibition assay was performed on three different growth mediums, potato dextrose agar (PDA), tryptic soy agar (TSA), and PDA-TSA (1:1 v/v) for the selection of potential antagonistic isolates. According to the result, isolate PA2 showed the highest inhibitory effect with 65.5% against C. coccodes on PDA and with 96.5% against S. minor on TSA. However, the same isolate showed the highest inhibition with 58.5% against C. acutatum on PDA-TSA. In addition, an in vivo experiment was performed to evaluate these bacterial isolates for biological control against fungal pathogens. Plants treated with bacteria were analyzed with phytopathogens and plants inoculated with phytopathogens were treated with isolates to determine the biological control effect against fungi. According to the result, all five isolates tested showed inhibitory effects against phytopathogens at various levels. Mode of action of these rhizobacterial isolates was evaluated with siderophore production, protease assay, chitinase assay and phosphate solubilizing assay. Bacterial isolates were identified by 16S rDNA sequencing, which showed that isolates PA1 and PA2 belong to Bacillus subtilis, whereas, PA4, PA5, and PA12 were identified as Bacilus altitudinis, Paenibacillus polymyxa and Bacillus amyloliquefaciens, respectively. Results of the current study suggest that rhizobacterial isolates can be used for the plant growth promoting rhizobacteria (PGPR) effect as well as for biological control of various phytopathogens.
The Korean Journal of Mycology | 2013
Jin Hee Jung; Sang Woo Kim; Yun Seok Kim; Kabir Lamsal; Youn Su Lee
The experiment was carried out to analyze the inhibition effect of plant pathogenic fungi and growth promotion activity induced by the bacterial strains isolated from peatmoss. Among the isolated bacterial strains, B10-2, B10-4, B10-5 and B10-6 which showed more than 30% inhibition rate against Botrytis cinerea and Rhizoctonia solani in vitro, were further analyzed in the greenhouse for the growth promotion activity on lettuce (Lactuca sativa), pak-choi (Brassica compestris L. ssp. chinensis) and Chinese cabbage (Brassica campestris L. ssp. pekinensis). The results showed the treatment of B10-4 on lettuce showed the highest growth promotion activity with the leaf area (169.17 cm2), fresh weight (leaf: 40.29 g, root: 8.80 g)and dry weight (leaf: 11.24 g, root: 4.17 g), which was about two folds as compared to control. On pak-choi, the growth promotion rate was the highest with the leaf area of 112.87 cm2, leaf fresh weight of 60.70 g, root fresh weight of 3.37 g, leaf dry weight of 14.34 g, and root dry weight of 1.90 g. As a result of treatment of B10-13 on chinese cabbage, the growth promotion rate was the highest with the leaf area (293.56 cm2), fresh weight (leaf: 113.67 g, root: 2.40 g) and dry weight (leaf: 6.03 g, root: 0.53 g). The production of Indole Acetic Acid (IAA) and Indole-3-Butylic Acid (IBA) were also analyzed in these bacterial isolates. The IAA and IBA analyses were carried out in all bacterial isolates each day within the 5 days of incubation period. The highest production of IAA was observed with 112.57 μg/mg protein in B10-4 after 3 days of incubation and IBA production was the highest in B10-2 with 58.71 μg/mg protein after 2 days of incubation. Also, phosphate solubilizing activity was expressed significantly in B10-13 in comparison to that of other bacterial isolates. Bacterial identification showed that B10-2 was Bacillaceae bacterium and B10-5 was Bacillus cereus, B10-4 and B10-6 were Bacillus sp. and B-13 was Staphylococcus sp. by ITS sequence.
Mycobiology | 2013
Kabir Lamsal; Sang Woo Kim; Shahram Naeimi; Mahesh Adhikari; Dil Raj Yadav; Changmu Kim; Hyang Burm Lee; Youn Su Lee
Abstract Three Penicillium species have been isolated from insect specimens in Korea; Penicillium sp., P. steckii, and P. polonicum. Penicillium sp. (KNU12-3-2) was isolated from Lixus imperessiventris, while P. polonicum (KNU12-1-8) and Penicillium steckii (KNU12-2-9) were isolated from Muljarus japonicas and Meloe proscarabaeus, respectively. The identification was based on the morphological characteristics of the fungi and in internal transcribed spacer analysis. This is the first report on the isolation of these three species of Penicillium from insects in Korea.
Journal of Microbiology and Biotechnology | 2009
Sang Woo Kim; Kyoung Su Kim; Kabir Lamsal; Young Jae Kim; Seung Bin Kim; Mooyoung Jung; Sang Jun Sim; Ha Sun Kim; Seok Joon Chang; Jong Kuk Kim; Youn Su Lee