Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kade D. Roberts is active.

Publication


Featured researches published by Kade D. Roberts.


ACS Chemical Biology | 2014

Teaching ‘Old’ Polymyxins New Tricks: New-Generation Lipopeptides Targeting Gram-Negative ‘Superbugs’

Tony Velkov; Kade D. Roberts; Roger L. Nation; Jiping Wang; Philip E. Thompson; Jian Li

The antimicrobial lipopeptides polymyxin B and E (colistin) are being used as a ‘last-line’ therapy for infections caused by multidrug-resistant Gram-negative pathogens. Polymyxin resistance implies a total lack of antibiotics for the treatment of life-threatening infections caused by the Gram-negative ‘superbugs’. This report details the structure–activity relationships (SAR) based design, in toto synthesis, and preclinical evaluation of a series of novel polymyxin lipopeptides with better antibacterial activity against polymyxin-resistant Gram-negative bacteria.


Bioconjugate Chemistry | 2014

Probing the Penetration of Antimicrobial Polymyxin Lipopeptides into Gram-Negative Bacteria

Zakuan Zainy Deris; James D. Swarbrick; Kade D. Roberts; Mohammad A. K. Azad; Jesmin Akter; Andrew S. Horne; Roger L. Nation; Kelly L. Rogers; Philip E. Thompson; Tony Velkov; Jian Li

The dry antibiotic development pipeline coupled with the emergence of multidrug resistant Gram-negative ‘superbugs’ has driven the revival of the polymyxin lipopeptide antibiotics. Polymyxin resistance implies a total lack of antibiotics for the treatment of life-threatening infections. The lack of molecular imaging probes that possess native polymyxin-like antibacterial activity is a barrier to understanding the resistance mechanisms and the development of a new generation of polymyxin lipopeptides. Here we report the regioselective modification of the polymyxin B core scaffold at the N-terminus with the dansyl fluorophore to generate an active probe that mimics polymyxin B pharmacologically. Time-lapse laser scanning confocal microscopy imaging of the penetration of probe (1) into Gram-negative bacterial cells revealed that the probe initially accumulates in the outer membrane and subsequently penetrates into the inner membrane and finally the cytoplasm. The implementation of this polymyxin-mimetic probe will advance the development of platforms for the discovery of novel polymyxin lipopeptides with efficacy against polymyxin-resistant strains.


The Journal of Antibiotics | 2014

A secondary mode of action of polymyxins against Gram-negative bacteria involves the inhibition of NADH-quinone oxidoreductase activity

Zakuan Zainy Deris; Jesmin Akter; Sivashangarie Sivanesan; Kade D. Roberts; Philip E. Thompson; Roger L. Nation; Jian Li; Tony Velkov

Polymyxin B and colistin were examined for their ability to inhibit the type II NADH-quinone oxidoreductases (NDH-2) of three species of Gram-negative bacteria. Polymyxin B and colistin inhibited the NDH-2 activity in preparations from all of the isolates in a concentration-dependent manner. The mechanism of NDH-2 inhibition by polymyxin B was investigated in detail with Escherichia coli inner membrane preparations and conformed to a mixed inhibition model with respect to ubiquinone-1 and a non-competitive inhibition model with respect to NADH. These suggest that the inhibition of vital respiratory enzymes in the bacterial inner membrane represents one of the secondary modes of action for polymyxins.


Analytical Biochemistry | 2011

Design, synthesis, and evaluation of a new fluorescent probe for measuring polymyxin-lipopolysaccharide binding interactions.

Rachel L. Soon; Tony Velkov; Francis Chi Keung Chiu; Philip E. Thompson; Rashmi Kancharla; Kade D. Roberts; Ian Larson; Roger L. Nation; Jian Li

Fluorescence assays employing semisynthetic or commercial dansyl-polymyxin B have been widely employed to assess the affinity of polycations, including polymyxins, for bacterial cells and lipopolysaccharide (LPS). The five primary γ-amines on diaminobutyric acid residues of polymyxin B are potentially derivatized with dansyl-chloride. Mass spectrometric analysis of the commercial product revealed a complex mixture of di- or tetra-dansyl-substituted polymyxin B. We synthesized a mono-substituted fluorescent derivative, dansyl[Lys]¹polymyxin B₃. The affinity of polymyxin for purified gram-negative LPS and whole bacterial cells was investigated. The affinity of dansyl[Lys]¹polymyxin B₃ for LPS was comparable to polymyxin B and colistin, and considerably greater (K(d)<1 μM) than for whole cells (K(d)∼6-12μM). Isothermal titration calorimetric studies demonstrated exothermic enthalpically driven binding between both polymyxin B and dansyl[Lys]¹polymyxin B₃ to LPS, attributed to electrostatic interactions. The hydrophobic dansyl moiety imparted a greater entropic contribution to the dansyl[Lys]¹polymyxin B₃-LPS reaction. Molecular modeling revealed a loss of electrostatic contact within the dansyl[Lys]¹polymyxin B₃-LPS complex due to steric hindrance from the dansyl[Lys]¹ fluorophore; this corresponded with diminished antibacterial activity (MIC≥16μg/mL). Dansyl[Lys]¹polymyxin B₃ may prove useful as a screening tool for drug development.


Biochemical Pharmacology | 2012

Structure–activity relationships for the binding of polymyxins with human α-1-acid glycoprotein

Mohammad A. K. Azad; Johnny X. Huang; Matthew A. Cooper; Kade D. Roberts; Philip E. Thompson; Roger L. Nation; Jian Li; Tony Velkov

Here, for the first time, we have characterized binding properties of the polymyxin class of antibiotics for human α-1-acid glycoprotein (AGP) using a combination of biophysical techniques. The binding affinity of colistin, polymyxin B, polymyxin B(3), colistin methansulfonate, and colistin nona-peptide was determined by isothermal titration calorimetry (ITC), surface plasma resonance (SPR) and fluorometric assay methods. All assay techniques indicated colistin, polymyxin B and polymyxin B(3) display a moderate binding affinity for AGP. ITC and SPR showed there was no detectable binding affinity for colistin methansulfonate and colistin nona-peptide, suggesting both the positive charges of the diaminobutyric acid (Dab) side chains and the N-terminal fatty acyl chain of the polymyxin molecule are required to drive binding to AGP. In addition, the ITC and fluorometric data suggested that endogenous lipidic substances bound to AGP provide part of the polymyxin binding surface. A molecular model of the polymyxin B(3)-AGP F1*S complex was presented that illustrates the pivotal role of the N-terminal fatty acyl chain and the D-Phe6-L-Leu7 hydrophobic motif of polymyxin B(3) for binding to the cleft-like ligand binding cavity of AGP F1*S variant. The model conforms with the entropy driven binding interaction characterized by ITC which suggests hydrophobic interactions coupled to desolvation events and conformational changes are the primary driving force for polymyxins binding to AGP. Collectively, the data are consistent with a role of this acute-phase reactant protein in the transport of polymyxins in plasma.


Analytical Chemistry | 2015

Significant Accumulation of Polymyxin in Single Renal Tubular Cells: A Medicinal Chemistry and Triple Correlative Microscopy Approach

Mohammad A. K. Azad; Kade D. Roberts; Heidi Yu; Boyin Liu; Alice V Schofield; Simon A. James; Daryl L. Howard; Roger L. Nation; Kelly L. Rogers; Martin D. de Jonge; Philip E. Thompson; Jing Fu; Tony Velkov; Jian Li

Polymyxin is the last-line therapy against Gram-negative ‘superbugs’; however, dose-limiting nephrotoxicity can occur in up to 60% of patients after intravenous administration. Understanding the accumulation and concentration of polymyxin within renal tubular cells is essential for the development of novel strategies to ameliorate its nephrotoxicity and to develop safer, new polymyxins. We designed and synthesized a novel dual-modality iodine-labeled fluorescent probe for quantitative mapping of polymyxin in kidney proximal tubular cells. Measured by synchrotron X-ray fluorescence microscopy, polymyxin concentrations in single rat (NRK-52E) and human (HK-2) kidney tubular cells were approximately 1930- to 4760-fold higher than extracellular concentrations. Our study is the first to quantitatively measure the significant uptake of polymyxin in renal tubular cells and provides crucial information for the understanding of polymyxin-induced nephrotoxicity. Importantly, our approach represents a significant methodological advancement in determination of drug uptake for single-cell pharmacology.


Innate Immunity | 2013

Molecular basis for the increased polymyxin susceptibility of Klebsiella pneumoniae strains with under-acylated lipid A

Tony Velkov; Rachel L. Soon; Pei L. Chong; Johnny X. Huang; Matthew A. Cooper; Mohammad A. K. Azad; Mark A. Baker; Philip E. Thompson; Kade D. Roberts; Roger L. Nation; Abigail Clements; Richard A. Strugnell; Jian Li

The impact of under-acylation of lipid A on the interaction between Klebsiella pneumoniae LPS and polymyxins B and E was examined with fluorometric and calorimetric methods, and by 1H NMR, using a paired wild type (WT) and the ΔlpxM mutant strains B5055 and B5055ΔlpxM, which predominantly express LPS with hexa- and penta-acylated lipid A structures respectively. LPS from B5055ΔlpxM displayed a fourfold increased binding affinity for polymyxins B and E compared with the B5055 WT LPS. EC50 values were consistent with polymyxin minimum inhibitory concentration (MIC) values for each strain. Accordingly, polymyxin exposure considerably enhanced the permeability of the B5055ΔlpxM OM. Analysis of the melting profiles of isolated LPS aggregates suggested that bactericidal polymyxin activity may relate to the acyl chains’ phase of the outer membrane (OM). The enhanced polymyxin susceptibility of B5055ΔlpxM may be attributable to the favorable insertion of polymyxins into the more fluid OM compared with B5055. Molecular models of the polymyxin B–lipid A complex illuminate the key role of the lipid A acyl chains for complexation of polymyxin. The data provide important insight into the molecular basis for the increased polymyxin susceptibility of K. pneumoniae strains with under-acylated lipid A. Under-acylation appears to facilitate the integration of the N-terminal fatty-acyl chain of polymyxin into the OM resulting in an increased susceptibility to its antimicrobial activity/activities.


Journal of Antimicrobial Chemotherapy | 2016

Human oligopeptide transporter 2 (PEPT2) mediates cellular uptake of polymyxins

Xiaoxi Lu; Ting Chan; Chenghao Xu; Ling Zhu; Qi Tony Zhou; Kade D. Roberts; Hak-Kim Chan; Jian Li; Fanfan Zhou

OBJECTIVES Polymyxins are a last-line therapy to treat MDR Gram-negative bacterial infections. Nephrotoxicity is the dose-limiting factor for polymyxins and recent studies demonstrated significant accumulation of polymyxins in renal tubular cells. However, little is known about the mechanism of polymyxin uptake into these cells. Oligopeptide transporter 2 (PEPT2) is a solute carrier transporter (SLC) expressed at the apical membrane of renal proximal tubular cells and facilitates drug reabsorption in the kidney. In this study, we examined the role of PEPT2 in polymyxin uptake into renal tubular cells. METHODS We investigated the inhibitory effects of colistin and polymyxin B on the substrate uptake mediated through 15 essential SLCs in overexpressing HEK293 cells. The inhibitory potency of both polymyxins on PEPT2-mediated substrate uptake was measured. Fluorescence imaging was employed to investigate PEPT2-mediated uptake of the polymyxin fluorescent probe MIPS-9541 and a transport assay was conducted with MIPS-9541 and [(3)H]polymyxin B1. RESULTS Colistin and polymyxin B potently inhibited PEPT2-mediated [(3)H]glycyl-sarcosine uptake (IC50 11.4 ± 3.1 and 18.3 ± 4.2 μM, respectively). In contrast, they had no or only mild inhibitory effects on the transport activity of the other 14 SLCs evaluated. MIPS-9541 potently inhibited PEPT2-mediated [(3)H]glycyl-sarcosine uptake (IC50 15.9 μM) and is also a substrate of PEPT2 (Km 74.9 μM). [(3)H]polymyxin B1 was also significantly taken up by PEPT2-expressing cells (Km 87.3 μM). CONCLUSIONS Our study provides the first evidence of PEPT2-mediated uptake of polymyxins and contributes to a better understanding of the accumulation of polymyxins in renal tubular cells.


ChemBioChem | 2013

Polymyxins and analogues bind to ribosomal RNA and interfere with eukaryotic translation in vitro.

Lisa S. McCoy; Kade D. Roberts; Roger L. Nation; Philip E. Thompson; Tony Velkov; Jian Li; Yitzhak Tor

Looking for targets: while the bactericidal activity of polymyxins is attributed to changes in membrane permeation, we show that these antibiotics can bind prokaryotic and eukaryotic A-sites, domains responsible for translational decoding. Polymyxin B, colistin and analogues also hinder eukaryotic translation in vitro. These new targets and effects might be partially responsible for the plethora of adverse effects by these potent bactericidal agents.


Antimicrobial Agents and Chemotherapy | 2015

Cellular Uptake and Localization of Polymyxins in Renal Tubular Cells Using Rationally Designed Fluorescent Probes

Bo Yun; Mohammad A. K. Azad; Cameron J. Nowell; Roger L. Nation; Philip E. Thompson; Kade D. Roberts; Tony Velkov; Jian Li

ABSTRACT Polymyxins are cyclic lipopeptide antibiotics that serve as a last line of defense against Gram-negative bacterial superbugs. However, the extensive accumulation of polymyxins in renal tubular cells can lead to nephrotoxicity, which is the major dose-limiting factor in clinical use. In order to gain further insights into the mechanism of polymyxin-induced nephrotoxicity, we have rationally designed novel fluorescent polymyxin probes to examine the localization of polymyxins in rat renal tubular (NRK-52E) cells. Our design strategy focused on incorporating a dansyl fluorophore at the hydrophobic centers of the polymyxin core structure. To this end, four novel regioselectively labeled monodansylated polymyxin B probes (MIPS-9541, MIPS-9542, MIPS-9543, and MIPS-9544) were designed, synthesized, and screened for their antimicrobial activities and apoptotic effects against rat kidney proximal tubular cells. On the basis of the assessment of antimicrobial activities, cellular uptake, and apoptotic effects on renal tubular cells, incorporation of a dansyl fluorophore at either position 6 or 7 (MIPS-9543 and MIPS-9544, respectively) of the polymyxin core structure appears to be an appropriate strategy for generating representative fluorescent polymyxin probes to be utilized in intracellular imaging and mechanistic studies. Furthermore, confocal imaging experiments utilizing these probes showed evidence of partial colocalization of the polymyxins with both the endoplasmic reticulum and mitochondria in rat renal tubular cells. Our results highlight the value of these new fluorescent polymyxin probes and provide further insights into the mechanism of polymyxin-induced nephrotoxicity.

Collaboration


Dive into the Kade D. Roberts's collaboration.

Top Co-Authors

Avatar

Tony Velkov

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge